Problem Set 10

Differential Geometry WS 2019/20

Problems 1 to 3 can be discussed in the tutorial.
You may submit solutions for Problems 4 and 5 until January 15.
Problem 1[Surfaces of revolution]
Let $\gamma=(r, z): I \rightarrow(0, \infty) \times \mathbb{R}$ be either an injective or a simple closed regular plane curve. Define F to be the image of $\Phi: I \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by

$$
\Phi(t, \theta)=(r(t) \cos \theta, r(t) \sin \theta, z(t))
$$

(i) Show that F is a regular surface.
(ii) Compute the first fundamental form of F.
(iii) Determine the Gauss map, the Weingarten map, principal curvatures and corresponding directions, mean and Gaussian curvature in terms of γ and its derivatives.

Problem 2

(i) Recall the parametrizations $\varphi_{ \pm}$of Problem 2, Set 6 . Let p be a non-constant complex polynomial. Define a map $\bar{p}: S^{2} \rightarrow S^{2}$ via

$$
\bar{p}(x)= \begin{cases}\varphi\left(p\left(\varphi_{+}^{-1}(x)\right)\right) & \text { for } x \neq(0,0,1) \\ (0,0,1) & \text { else }\end{cases}
$$

Show that \bar{p} is a differentiable map.
(ii) Compute the differential $d_{z} p$ of the polynomial considered as a differentiable map $p: \mathbb{C} \rightarrow \mathbb{C}$. Explain why the set of critical points $C(p) \subset \mathbb{C}$,

$$
C(p):=\left\{z \in \mathbb{C} \mid d_{z} p(\mathbb{C}) \neq \mathbb{C}\right\}
$$

is finite. Denote by $C_{0}(p):=\{p(z) \mid z \in C(p), \zeta \in \mathbb{C} \backslash C(p): p(\zeta)=p(z)\}$. Show that $p(\mathbb{C} \backslash C(p))=$ $\mathbb{C} \backslash C_{0}(p)$. Avoid using the fundamental theorem of algebra and conclude it now.
Hint: Show that $p(\mathbb{C} \backslash C(p))$ is open and closed in $\mathbb{C} \backslash C_{0}(p)$. (i) is not necessary for the argument but can be conveniently used.

Problem 3

Consider the following equivalence relation on the square $[0,1] \times[0,1]:(0, t) \sim(1, t),(s, 0) \sim$ $(1-s, 1)$ and $(s, t) \sim(s, t)$ for all $s, t \in[0,1]$. Show that the quotient space $K^{2}:=[0,1] \times[0,1] / \sim$ carries a metric for which the projection map $[0,1] \times[0,1] \rightarrow K^{2}$ is continuous and open. i.e. maps open subsets to open subsets and that the metric space K^{2} is a 2 -dimensional manifold.

Problem 4

Let $p: F \rightarrow S^{2}$ be a local diffeomorphism. Show the lifting property for paths and homotopies of paths as used in class: Let X be any metric space, $\varphi:[0,1] \times X \rightarrow S^{2}$ be a continuous map. Let $\tilde{\varphi}_{0} X \rightarrow F$ be a continuous map such that $p \circ \tilde{\varphi}_{0}=\varphi(0,$.$) . Then there exists a unique continuous$ $\operatorname{map} \tilde{\varphi}:[0,1] \times X \rightarrow F$ such that $p \circ \tilde{\varphi}=\varphi$ and $\tilde{\varphi}(0,)=.\tilde{\varphi}_{0}$.

Problem 5

Consider the following equivalence relation on $S^{2 n+1} \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$: for $z, z^{\prime} \in S^{2 n+1}$

$$
z \sim z^{\prime} \quad \Leftrightarrow \quad z^{\prime}=\lambda z
$$

for some $\lambda \in S^{1}$. The "quotient space" of equivalence classes is denoted by $S^{2 n+1} / S^{1}$.
(i) Show that d given by

$$
d\left([z],\left[z^{\prime}\right]\right)=\inf \left\{\left\|\zeta-\zeta^{\prime}\right\| \mid \zeta \sim z, \zeta^{\prime} \sim z^{\prime}\right\}
$$

for equivalence classes $[z],\left[z^{\prime}\right] \in S^{2 n+1} / S^{1}$ defines a metric on the quotient. (ii) Show that $\left(S^{2 n+1} / S^{1}, d\right)$ is a manifold of dimension $2 n$.

