Problem Set 11

Differential Geometry WS 2019/20

Problems 1 to 3 can be discussed in the tutorial.
You may submit solutions for Problems 4-6 until January 22.

Problem 1

(i) Check that

$$
X(x, y, z)=\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right), Y(x, y, z)=\left(\begin{array}{c}
x z \\
y z \\
1-z^{2}
\end{array}\right)
$$

define smooth vector fields on $S^{2} \subset \mathbb{R}^{3}$ and express them in stereographic coordinates.
(ii) Let $\alpha \in \mathbb{R}^{*}$ be a linear form on \mathbb{R}^{3}. Express the smooth one form $\iota^{*} \alpha=\left.\alpha\right|_{T S^{2}}$ in spherical coordinates.
(iii) Express the Riemannian metric on $S^{2} \subset \mathbb{R}^{3}$ induced by the Euclidean metric in stereographic coordinates.

Problem 2

(i) Show that

$$
G:=\left\{A \in M(n ; \mathbb{R}) \mid A^{T} A=E_{n}, \operatorname{det} A=1\right\}
$$

is a submanifold of the space of $n \times n$-matrices $M(n ; \mathbb{R}) \cong \mathbb{R}^{n^{2}}$ and a subgroup of the group. $G l(n ; \mathbb{R})$ of invertible $n \times n$-matrices and determine its dimension. Explain why

$$
\mu: G \times G \rightarrow G, \quad \mu(g, h)=g h^{-1}
$$

is a smooth map.
(ii) Describe the tangent space $T_{E_{n}} G$. For $g \in G$ let $L_{g}: G \rightarrow G$ denote the smooth map $L_{g}(h)=$ $g h$. For $v \in T_{E_{n}}$ define a vector field X on G by

$$
X(g):=d_{E_{n}} L_{g}(v)
$$

Show that for all $g, h \in G$

$$
X(g h)=d_{h} L_{g} X(h)
$$

and that X is differentiable. Moreover, if $\left\{v_{j}\right\} \subset T_{E_{n}} G$ is a basis, then for the corresponding vector fields $\left\{X_{j}(g)\right\}$ is a basis of $T_{g} G$. (iii) Finally let X, Y be the vector fields corresponding to two elements $v, w \in T_{E_{n}} G$. Show that their Lie bracket $[X, Y]$ is also a vector field corresponding to an element in $T_{E_{n}} G$. Describe that element.

Problem 3

Let $\gamma:[a, b] \rightarrow M$ be a differentiable curve in a differentiable manifold M and V be a vector field along γ. Show that there is a differentiable map $\Gamma:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ such that

$$
\left.\frac{\partial}{\partial s}\right|_{s=0}(\Gamma(s, t))=V(t)
$$

Hint: Prove the statement, when $\gamma([a, b])$ is contained in a coordinate chart. Then cover $[a, b]$ by finite number of intervalls which are mapped to coordinate chart under γ.

Problem 4

For smooth vector fields X, Y, Z and a smooth real function f on a smooth manifold show that

$$
\begin{aligned}
{[X, Y] } & =-[Y, X] \\
{[X, f Y] } & =f[X, Y]+X(f) Y \\
{[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y] } & =0 .
\end{aligned}
$$

Problem 5

Let (M, g) be a Riemannian manifold, $p, q \in M$ two points,

$$
d_{g}(p, q):=\inf \left\{\ell_{g}(\gamma) \mid \gamma:[0,1] \rightarrow M \in C^{1}([0,1], M), \gamma(0)=p, \gamma(1)=q\right\}
$$

Show that $\left(M, d_{g}\right)$ is a metric space.

Problem 6

Consider the manifold $M:=S^{2 n+1} / S^{1}$ from Problem 5 of Problem Set 10. Correction: $S^{2 n+1} \subset$ \mathbb{C}^{n+1} !
(i) Show that $\left\{\varphi_{j}: \mathbb{C}^{n} \rightarrow M\right\}_{j \in\{1, \ldots, n+1\}}$

$$
\varphi_{j}\left(z_{1}, \ldots, z_{n}\right):=\frac{1}{\sqrt{1+\|\mathbf{z}\|^{2}}}\left(z_{1}, \ldots, z_{j-1}, 1, z_{j}, \ldots, z_{n}\right)
$$

where $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$, define a smooth atlas $\left\{U_{j}, \varphi_{j}^{-1}, \mathbb{C}^{n}\right\}_{j}$ of M, where $U_{j}:=\varphi_{j}\left(\mathbb{C}^{n}\right)$.
(ii) Show that the canonical projection $\pi: S^{2 n+1} \rightarrow M, p(x)=[x]$ where $[x]$ denotes the equivalence class is smooth.
(iii) Show that the tangent space $T[x] M$ at $[x] \in M$ for a given $x \in S^{2 n+1}$ can be identified with the orthogonal complement $\left(T_{x}\left(S^{1} \cdot x\right)\right)^{\perp} \subset T_{x} S^{2 n+1}$ in $T_{x} S^{2 n+1}$ w.r.t. the scalar product induced by the Euclidean scalar product, where the identification is given by the differential $d_{x} \pi$. Show that the resulting isomorphism between $\left(T_{x}\left(S^{1} \cdot x\right)\right)^{\perp}$ and $\left(T_{\lambda x}\left(S^{1} \cdot x\right)\right)^{\perp}$ for any $\lambda \in S^{1}$ is an isometry. (iv) Thus the induced scalar product on $\left(T_{x}\left(S^{1} \cdot x\right)\right)^{\perp}$ defines a scalar product on each tangent space of M. Show that this is a Riemannian metric.
(v) Compute the metric defined in (iii) w.r.t. the coordinate chart $\left(U_{n+1}, \varphi_{n+1}^{-1}\right)$.

