
Problem Set 12

Differential Geometry WS 2019/20

Problems 1 to 4 can be discussed in the tutorial.

You may submit solutions for Problems 5 and 6 until January 29.

Problem 1

(i) Let $\gamma : I \rightarrow M$ be a C^2 -curve in a manifold M , I is an interval which satisfies the geodesic equation. Prove that its velocity is constant:

$$g_{\gamma_0(t)}(\dot{\gamma}_0(t), \dot{\gamma}_0(t)) \equiv \text{const.}$$

(ii) Let $U \subset \mathbb{R}^n$ be an open subset and g be a Riemannian metric on U which is bounded with respect to the Euclidean norm. Suppose $\gamma : I \rightarrow U$ is a maximal solution of the geodesic equation for an interval I , i.e. for any solution $\tilde{\gamma} : \tilde{I} \rightarrow U$ with $I \subset \tilde{I}$ and $\tilde{\gamma}|_I = \gamma$ it follows $I = \tilde{I}$.

Show that if $a := \sup I < \infty$ then there exists a sequence $\{t_n\}_n \subset I$, $t_n \rightarrow a$ such that $\{\gamma(t_n)\}_n$ converges in $\mathbb{R}^n \setminus U$. A similar statement holds if $b := \inf I > -\infty$ and does not need to be repeated.

Problem 2

Let (M, g) be a Riemannian manifold, and ∇ its Levi–Civita connection. Let (U, φ, V) be a coordinate chart. Then the Christoffel symbols $\Gamma_{ij}^k : U \rightarrow \mathbb{R}$ are defined via

$$\nabla_{\frac{\partial}{\partial x_j}} \frac{\partial}{\partial x_i} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k}.$$

for the coordinate vector fields $\frac{\partial}{\partial x_i}$

(i) Show that

$$\Gamma_{ij}^k := \frac{1}{2} \sum_{\ell=1}^n g^{k\ell} \left(\frac{\partial g_{j\ell}}{\partial x_i} + \frac{\partial g_{\ell i}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_\ell} \right).$$

(ii) Derive relations between the different Christoffel symbols with permuted indices from the properties of ∇ .

(iii) Let (x_1, \dots, x_n) and $(\tilde{x}_1, \dots, \tilde{x}_n)$ be coordinates of two overlapping coordinate charts. Derive a formula for the Christoffel symbols $\tilde{\Gamma}_{ij}^k$ w.r.t. the second chart in terms of the first Christoffel symbols Γ_{ij}^k and the transition map $\varphi = \varphi(x_1, \dots, x_n)$ and its derivatives.

Problem 3

(i) Compute the Christoffel symbols for the Riemannian metric on $S^2 \subset \mathbb{R}^3$ induced by the Euclidean scalar product on \mathbb{R}^3 in spherical coordinates.

(ii) Determine the geodesic equation in these coordinates.

(iii) Conclude that geodesics of the sphere are exactly great circles.

Problem 4

Let $\gamma_0 : [a, b] \rightarrow M$ be a differentiable curve connecting $p = \gamma_0(a)$ and $q = \gamma_0(b)$. Show that the energy functional

$$\mathcal{E}_g(\gamma) := \frac{1}{2} \int_a^b g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) dt$$

attains its minimum among all such curves at γ_0 if and only if the length functional

$$\ell_g(\gamma) = \int_a^b \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt$$

is minimal at γ_0 among all such curves and γ_0 has constant velocity:

$$g_{\gamma_0(t)}(\dot{\gamma}_0(t), \dot{\gamma}_0(t)) \equiv \text{const.}$$

Repeat the the part shown in class. For the only-if-part I suggest the following: Assume that there is a curve γ_1 connecting p and q with shorter length. Given $\epsilon > 0$ construct a **regular** differentiable curve γ_2 such that $\ell(\gamma_2) < \ell(\gamma_1) + \epsilon$.

Problem 5

Find a metric covariant derivative on \mathbb{R}^n with respect to the standard Euclidean product which is not torsion free.

Problem 6

(i) Compute the Christoffel symbols for the Riemannian metric on the upper half plane $\mathbb{H} \subset \mathbb{R}^2$ given by

$$g_{(x_1, x_2)} = \frac{1}{x_2^2} \langle \cdot, \cdot \rangle_{\text{standard}}$$

(ii) Determine the geodesic equations in these coordinates.

(iii) Conclude that geodesics of (\mathbb{H}, g) are the half circles with center on $\mathbb{R} \times \{0\}$ and halflines perpendicular to $\mathbb{R} \times \{0\}$. Notice: The computations where sketched in class and there was also a hint how to approach (iii).