# Problem Set 13 

## Differential Geometry WS 2019/20

Problems 1 to 3 can be discussed in the tutorial.
You may submit solutions for Problems 4 and 5 until February 5.

## Problem 1

(i) Let $F \subset \mathbb{R}^{3}$ be a regular surface. The first fundamental form of $F$ is a Riemannian metric on $F$. Define for $X \in T_{p} F$ and a vector field $Y$ in a neighbourhodd of $p$

$$
\nabla_{X} Y:=\operatorname{proj}_{T_{p} F}^{\perp} X(Y)
$$

for the orthogoan projection $\operatorname{proj}_{T_{p} F}^{\perp}: \mathbb{R}^{3} \mapsto T_{p} F$ and the componentwise directional derivative $X(Y)$ of $Y$. Show that $\nabla$ is a torsion-free, metric covariant derivative on vector fields on $F$.
(ii) Using (i) and the geodesic equation involving the Levi-Civita connection $\nabla$, characterize geodesics on $F$.
(iii) Determine all geodesics of the sphere $S^{2} \subset \mathbb{R}^{3}$.
(iv) Let $Z \subset \mathbb{R}^{3}$ be a surface of revolution about the $z$-axis. Call the intersections of a plane containing the $z$-axis with $Z$ a meridian (actually the connected component). Prove Clairaut's relation: If $\gamma$ is a geodesic on $Z$, an $\psi$ the angle it forms with the meridian at some point, while $r>0$ is the distance from the $z$-axis at the same point, then $r \sin \psi$ is independent of the point, i.e. a constant. Discuss the converse.

Notice: (i) and (ii) are true or reasonable to ask for an arbitrary submanifolds in $\mathbb{R}^{n}$ and appropriate versions hold for submanifolds in Riemannian manifolds.

## Problem 2

Show Proposition 81 of the lecture: Let $\varphi: N \rightarrow M$ be a differentiable map between manifolds, $\nabla$ a covariant derivative on vector fields on $M$. Then there is unique covariant derivative on vector fields along $\varphi$, which assigns for each $p \in N$, a tangent vector $X \in T_{p} N$ and a vector field $Y$ along $\varphi$ (defined in a neighbourhood of $p$, a tangent vector $\nabla_{X}^{\varphi} Y \in T_{\varphi(p)} M$, which satisfies the following conditions:
(i) $(X, Y) \mapsto \nabla_{X}^{\varphi} Y$ is linear in $X$ and $Y$
(ii) Leibniz rule: for a differentiable function $f$ defined on a neighbourhood of $p$ we have
$\nabla_{X}^{\varphi}(f Y)=X(f) Y(\varphi(p))+f \nabla_{X}^{\varphi} Y$
(iii) For a vector field $Y$ (defined on a neighborhood of $\varphi(p)$ we have $\nabla_{X}^{\varphi}(Y \circ \varphi)=\nabla_{f_{*} X} Y$.
(iv) Moreover, if $g$ is a Riemannian metric on $M$ and $\nabla$ is metric, then $\nabla^{\varphi}$ is allso metric
(v) Finally, if $\nabla$ is torsion free, then $\nabla^{\varphi}$ is torsion free in the following sense: If $Z_{1}, Z_{2}$ are vector fields on $N, \varphi_{*} Z_{i}$ define vector fields along $\varphi$ and we have $\nabla_{Z_{1}}^{\varphi}\left(\varphi_{*} Z_{2}\right)-\nabla_{Z_{2}}^{\varphi}\left(\varphi_{*} Z_{1}\right)=\varphi_{*}\left[Z_{1}, Z_{2}\right]$. (vi) For coordinates $\left(z^{1}, \ldots, z^{n}\right)$ around $p$ in $N$ and $\left(x^{1}, \ldots, x^{m}\right)$ around $\varphi(p)$ in $M$ describe the functions $A_{\alpha i}^{j}$ around $p$ in $N$ for which

$$
\nabla_{\frac{\partial}{\partial z_{\alpha}}}^{\varphi} \frac{\partial}{\partial x_{i}}=\sum_{\alpha, j} A_{\alpha i}^{j} \frac{\partial}{\partial x_{j}}
$$

in terms of the Christoffel symbols of $\nabla$ and (derivatives of) $\varphi$.

## Problem 3

(i) What is the replacement for the first Bianchi identity if $\nabla$ is not torsion-free. Compute the contribution of the torsion $T$.
(ii) Prove the second Bianchi identity: for all $X, Y, Z \in T_{p} M$ :

$$
\left(\nabla_{X} R\right)(Y, Z)+\left(\nabla_{Y} R\right)(Z, X)+\left(\nabla_{Z} R\right)(X, Y)
$$

## Problem 4

Complete the proof that the right hand side in the efinition of the Riemann curvature tensor which assigns to vector fields $X, X, Z$ in a neighborhood of $p$ a vector field

$$
R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla[X, Z] Z
$$

that vector field at $p$ depends only on $X_{p}, Y_{p}, Z_{p}$. For this, show that for any differentiable function $f$ on that neighbourhood of $p$

$$
R(f X, Y) Z=R(X, f Y) Z=R(X, Y)(f Z)=f R(X, Y) Z
$$

## Problem 5

(i) Show that the torsion of a covariant derivative defined on vector fields $X, Y$ on a neighbourhood of $p$ via

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

depends only on $X_{p}, Y_{p}, Z_{p}$ at $p$. For this, show that for any differentiable function $f$ on that neighbourhood of $p$

$$
T(f X, Y)=T(X, f Y)=f T(X, Y)
$$

at $p$.
(ii) Let $\nabla$ be a covariant derivative on vector fields of $M$. We define the second covariant derivative of a vector field $Z$ on $M$ in direction of $X, Y \in T_{p} M$ via

$$
\nabla_{X, Y}^{2}:=\nabla_{X}\left(\nabla_{\tilde{Y}} Z\right)-\nabla_{\nabla_{X} \tilde{Y}} Z
$$

where $\tilde{Y}$ is a vector field in a neighborhood of $p$ with $\tilde{Y}(p)=Y$. Show that the definition is independent of the extension $\tilde{Y}$ of $Y$. Show that

$$
(X, Y, Z) \mapsto \nabla_{X, Y}^{2}-\nabla_{Y, X}^{2} Z
$$

for vector fields $X, Y, Z$ defines a $(3,1)$-tensor if and only if $\nabla$ is torsion free. Show that under this condition

$$
R(X, Y) Z=\nabla_{X, Y}^{2}-\nabla_{Y, X}^{2}
$$

(iii) Let $g$ be a Riemannian metric and $\nabla$ be a covariant derivative on vector fields. Show that $\nabla$ is metric if and only if $\nabla g \equiv 0$ for the induced covariant derivative on $(2,0)$-tensors.

