Problem Set 2

Differential Geometry WS 2019/20

Problem 1

For an open interval $I \subset \mathbb{R}$ let $\gamma : I \to B_R \subset \mathbb{R}^2$ be a regular parametrized curve in the closed disk B_R of radius R, For $t_0 \in I$, $\gamma(t_0) \in \partial B_R$, i.e. γ touches the boundary of the disk from inside. Show that the absolute value of the curvature of γ at this point is at least 1/R.

The problems 2 and 4 serve as a guide to repeat and complete arguments in class.

Problem 2 [Lifting-Lemma]

Let $\varphi: I \to S^1$ be a continuous function on an interval $I \subset \mathbb{R}$. Let $t_0 \in I$, and $x_0 \in \mathbb{R}$ such that $\varphi(t_0) = e^{2\pi i x_0}$. A function $\tilde{\varphi}: I \to \mathbb{R}$ satisfying $\varphi(t) = e^{2\pi i \tilde{\varphi}(t)}$ for all $t \in I$ and $\tilde{\varphi}(t_0) = x_0$ is called lift of φ with initial value x_0 at t_0 .

(i) Show that any two such lifts with the same initial value agree. Hint: You can argue similar to Proposition 9 (2).

(ii) Explain why for intervals I_1, I_2 containing t_0 , lifts $\tilde{\varphi}_{I_1}$ of $\varphi|_{I_1}$ and $\tilde{\varphi}_{I_2}$ of $\varphi|_{I_2}$ with the given initial value define a lift of $\varphi|_{I_1\cup I_2}$ with that initial value. Now define the maximal interval $I' \subset I$ with $t_0 \in I'$ for which a lift $\tilde{\varphi}_{I'}$ of $\varphi|_{I'}$ with given initial value exists. Show that I' = I using the arguments from class.

(iii) Let $H: [0,1] \times I \to S^1$ be continuous and $\tilde{H}: [0,1] \times I \to \mathbb{R}$ be a map such that $H(s,t) = e^{2\pi i \tilde{H}(s,t)}$ for all s, t. Assume that $\tilde{H}(s,.): I \to \mathbb{R}$ is continuous for all $s \in [0,1]$ and $\tilde{H}(.,t_0): [0,1] \to \mathbb{R}$ is continuous. Show that then \tilde{H} must be continuous.

(iv) Show that the mapping degrees of two continuous maps $\varphi_0, \varphi_1 : S^1 \to S^1$ which are homotopic agree.

Problem 3

(i) Show that there is no continous map $u: B \to S^1 \subset B^1$ of the closed unit disk to its boundary such that $u|_{S^1} = \mathrm{id}_{S^1}$.

(ii) Show that any continuous map $u : B^2 \to B^2$ admits a fixed point. For that assume the contrary and construct an impossible map as in (i) using the uniquely defined line through x and u(x). Describe the map first geometrically and then by an explicit formula.

(iii) Is the statement in (ii) also true for continuous maps from the open disk to itself?

Problem 4

(i) Show that the map $e : \Delta \to S^1$ defined in the proof of Proposition 10 in class is continuous (see also Christian Bär's book, Proof of Proposition 2.2.10).

(ii) Show that $\delta: [0, L] \to \Delta$ given by $\delta(t) = (t, t)$ is homotopic to $\alpha: [0, L] \to \Delta$ given by

$$\alpha(t) := \begin{cases} (0, 2t) & \text{if } t \in [0, L/2] \\ (2t - L, L) & \text{if } t \in [L/2, L]. \end{cases}$$

Conclude that $e \circ \delta$ is homotopic to $e \circ \alpha$ using this homotopy.

(iii) Show that α is homotopic to $\varphi : t \in [0, L] \mapsto e^{2\pi i t/L} \in S^1$ by showing that $\alpha|_{[0, L/2]}$ is homotopic to $\varphi|_{[0, L/2]}$ and $\alpha|_{[L/2, L]}$ is homotopic to $\varphi|_{[L/2, L]}$ fixing the boundaries in both cases. Conclude that $\deg(\delta) = 1$.