Problem Set 6

Differential Geometry WS 2019/20

Problems 1 to 4 can be discussed in class.
You may submit solutions for Problems 5 and 6 until December 4.

Problem 1

Check whether the homotopies described in class which deform a simple closed, regular space curve of total curvature less than 4π into a plane circle are regular isotopies, i.e. all curves of the family are simple closed, regular space curves. Adapt them to fulfil that property if necessary.

Problem 2

(i) Show that the maps $\varphi_{ \pm}: \mathbb{R}^{2} \rightarrow S^{2}$ given by

$$
\varphi_{ \pm}(x, y)=\left(2 x /\left(x^{2}+y^{2}+1\right), 2 y /\left(x^{2}+y^{2}+1\right), \pm\left(x^{2}+y^{2}-1\right) /\left(x^{2}+y^{2}+1\right)\right)
$$

are regular parametrizations of the $2-$ sphere.
(ii) Compute the transition map $\varphi_{-}^{-1} \circ \varphi_{+}$. What is this map geometrically?

Problem 3

Let A be a 3×3-matrix for which $A^{T} A=E_{3}$ - a so-called special orthogonal matrix. The set of such is denoted by $S O(3)$ and forms a group.
Show that $x \in S^{2} \rightarrow A x \in S^{2}$ defines a diffeomorphism.

Problem 4

(i) Show that the double cone $C \subset \mathbb{R}^{3}$

$$
C:=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=0\right\}
$$

is not a regular surface. Hint: Assume that $\varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a regular parametrization, $0 \in U$ and $\varphi(0)=0$. There have to be two points $p, q \in U$ such that the z-coordinates of $\varphi(p)$ and $\varphi(q)$ have different signs. Consider $\varphi \circ \gamma$ for an injective curve $\varphi:(-\epsilon, \epsilon) \rightarrow U$ connecting p and q passing through 0 (see Ch. Bär's book if necessary)
(ii) (i) would also follow from the following statement: C is not an immersed surface. Prove the statement.
(iii) Show that

$$
C_{+}:=C \cap\left(\mathbb{R}^{2} \times[0, \infty)\right) \subset \mathbb{R}^{3}
$$

is not a regular surface either.

Problem 5

(i) Let $R>r>0$ be fixed real numbers. Show that the following subset of \mathbb{R}^{3} is a regular surface:

$$
T^{2}:=\left\{(x, y, z) \mid\left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}-4 R^{2}\left(x^{2}+y^{2}\right)=0\right\}
$$

(ii) Cover T^{2} by parametrizations (4 will conveniently do).
(iii) What does this surface look like?

Hint: It is a set with a rotational symmetry about the z-axis.

Problem 6

(i) Show that the following two subsets of \mathbb{R}^{2} are not diffeomorphic:

$$
A:=[0, \infty) \times\{0\} \cup\{0\} \times[0, \infty)
$$

and

$$
B:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{3}=0\right\}
$$

Sketch the sets to get an idea how to approach the problem.
(ii) Show that $F:(0,3 \pi / 2) \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by

$$
F(x, y)=(\cos x, \sin (2 x), y)
$$

is injective and locally an embedding (i.e. defines an immersed surface), but not a surface patch (i.e. the image is not a regular surface). Draw a sketch of an intersection with the plane $\mathbb{R}^{2} \times\{y\}$ for any $y \in \mathbb{R}$.

