Problem Set 7

Differential Geometry WS 2019/20

Problems 1 to 4 can be discussed in class.
You may submit solutions for Problem 5 until December 11.

Problem 1

(i) Describe the first fundamental of the sphere in the coordinates of Problem 2, Problem Set 6 (stereographic projection).
(ii) Use spherical angles (as for S^{2}) to define parametrizations of the ellipsoid

$$
E=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}+\frac{x^{2}}{c^{2}}=1\right.\right\}
$$

for $a, b, c>0$ and describe the firts fundamental form in the corresponding coordinates.
(iii) Find suitable global coordinates for the double cone without the vertex, $C \backslash\{0\} \subset \mathbb{R}^{3}$, of Problem 4, Problem Set 6 and describe the first fundamental form in those coordinates.

Problem 2

Show Proposition 39: If $\Phi:=\tilde{\varphi}^{-1} \circ \varphi$ is the transition map between the coordinates of two parametrizations $\varphi, \tilde{\varphi}$ of a surface $F \subset \mathbb{R}^{3}$ then the corresponding Gram matrices $g(),. \tilde{g}($.$) for$ the first fundamental form transform as follows

$$
g(x)=\left(d_{x} \Phi\right)^{T} \tilde{g}(\Phi(x)) d_{x} \Phi
$$

Problem 3

Which of the parametrizations of regular surfaces discussed in class or in the tutorial are angle preserving, i.e. conformal, i.e. if $\varphi: U \rightarrow F$ is a local parametrization, $p \in F, x \in U$ with $\varphi(x)=p$, $X, Y \in T_{p} F$ and $v, w \in \mathbb{R}^{2}$ such that $X=d_{x} \varphi(v), Y=d_{x} \varphi(w)$ we have

$$
\measuredangle(X, Y)=\measuredangle_{\mathbb{R}^{2}}(v, w) ?
$$

Problem 4

Compute the first fundamental form of the graph of a differentiable function on two variables with respect to the obvious parametrization.

Problem 5

Describe the first fundamental form of $T^{2} \subset \mathbb{R}^{3}$ if Problem 5, Problem Set 6 with respect to the following parametrization $\varphi:(0,2 \pi) \times(0,2 \pi) \rightarrow T^{2}$

$$
\varphi(\alpha, \beta)=((R-r \cos \beta) \cos \alpha,(R-r \cos \beta) \sin \alpha, r \sin \beta)
$$

