Problem Set 9

Differential Geometry WS 2019/20

Problems 1 to 4 can be discussed in the tutorial.
You may submit solutions for Problems 5 and 6 until January 8.

Problem 1

Prove the following statement: Let $F \subset \mathbb{R}^{3}$ be a regular oriented surface, $N: F \rightarrow S^{2}$ be its Gauss map. Let $\gamma: I \rightarrow F$ be an arc-length parametrized curve. Then γ is a line of curvature if and if there is a function $\lambda: I \rightarrow \mathbb{R}$ satisfying

$$
\frac{d}{d t} N(\gamma(t))=\lambda(t) \dot{\gamma}(t)
$$

for all $t \in I$.

Problem 2

Prove the following formula of Euler: Let $X_{1}, X_{2} \in T_{p} F$ be eigenvectors of the Weingartenmap of a regular surface $F \subset \mathbb{R}^{3}, p \in F,\left\|X_{i}\right\|=1$ for $i=1,2$ and $\left\langle X_{1}, X_{2}\right\rangle=0$ (Why is this possible?). Denote by κ_{1}, κ_{2} be the corresponding eigenvalues. Consider a vector of unit length $X \in T_{p} F$. Then $X:=\lambda_{1} X_{1}+\lambda_{2} X_{2}$ with $\lambda_{1}^{2}+\lambda_{2}^{2}=1$. Show that

$$
I I_{p}(X, X)=\lambda_{1}^{2} \kappa_{1}+\lambda_{2}^{2} \kappa_{2}
$$

Conclude that the principal curvatures are the extremal values of

$$
\left\{I I_{p}(X, X) \mid X \in T_{p} F,\|X\|=1\right\}
$$

Problem 3

Prove Lemma 52: Any regular surface $F \subset \mathbb{R}^{3}$ can be locally modelled around a apoint as the graph of a differentiable function over the tangent space at this point: If $N(p)$ is a normal at p, then there exist open neighbourhoods $U \subset T_{p} F \cong \mathbb{R}^{2}$ of $0, V \subset \mathbb{R}^{3}$ of p and a differentiable map $h: U \rightarrow \mathbb{R}$, such that

$$
F \cap V=\{p+x+h(x) N(p) \mid x \in U\}
$$

Hint: In the lemma we stated that the orthogonal projection to $T_{p} F$ restricted to $V \cap F$ is a diffeomorphism onto its image form which the claim follows (how?). Als note that in this formulation $T_{p} F$ is considered to be a vector subspace of \mathbb{R}^{3} rather than an affine subspace parrallel to it passing through p. Hence p had to be added.
This problem may not be discussed in the tutorial since it is a result from Analysis II (implicit function theorem etc.) You are expected to know how to solve it, so if in doubt, please ask.

Problem 4

Let $F \subset \mathbb{R}^{3}$ be a regular surface, $p \in F$. Show:
(i) If $K(p)>0$ or a sufficiently small neighbourhood $V \subset \mathbb{R}^{3}$ of $p, F \cap V$ lies on one side of the affine tangent plane $p+T_{p} F$ (a side of the hyperplane is given by

$$
\left\{x \in \mathbb{R}^{3} \mid\langle x-p, n\rangle \geq 0\right\}
$$

for a normal $n \neq 0$ to F at p.
(ii) If $K(p)<0$ than for any neighbourhood $V \subset \mathbb{R}^{3}$ of $p F \cap V$ lies on both sides of the affine tangent plane $p+T_{p} F$.
(iii) Explain why either of the two statement is false in the case $K(p)=0$.

Problem 5

Let $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a diffentiable function (at least C^{2}) for which $0 \in \mathbb{R}$ is a regular value, i.e. for all $x \in f^{-1}(0), d_{x} f \neq 0$. Explain why $F:=f^{-1}(0) \subset \mathbb{R}^{3}$ is a regular surface. Compute second fundamental form and Weingarten map in terms of f and its derivatives. Derive formulas for its Gaussian and its mean curvature.

Problem 6

Let $F \subset \mathbb{R}^{3}$ be a compact surface. Prove the following statements:
(i) The Gauss map is surjective.
(ii) If the Gauss map is injective then $K \geq 0$ everywhere.
(iii) Show that the restriction of the Gauss map to the set $\{p \in F \mid K(p) \geq 0\}$ is surjective.
(iv) Show that the restriction of the Gauss map to the set $\{p \in F \mid K(p)>0\}$ is a local diffeomorphism. Hint: Problem 5 of Problem Set 8 could be helpful.

