1 Curves in \mathbb{R}^2 and \mathbb{R}^3

- 1. (easy) What is a parametrization by arclength of a regular curve? Show the existence. Define curvature of a plane curve.
- 2. (easy) Let $\gamma:[a,b]\to\mathbb{R}^2$ be a regular smooth curve. Compute its curvature $\kappa:[a,b]\to\mathbb{R}$ in terms of $\dot{\gamma}, \ddot{\gamma}$.
- 3. (medium) Let $\gamma: (-\epsilon, \epsilon) \to \mathbb{R}^2$ be a regular smooth curve such that $\gamma(0) = (R, 0)$ and $\gamma((-\epsilon, \epsilon)) \subset \{z \in \mathbb{C} \mid |z| < 1\}$. Show that $\kappa(0) \geq \frac{1}{R}$.
- 4. (medium) Define the turning number of a plane curve and discuss its relation to the curvature of the curve.
- 5. (hard) Define the degree of a continuous map $\varphi: S^1 \to S^1$ and prove Brouwer's fixed point theorem in dimension 2 (Problem 3, Problem Set 2)
- 6. (hard) Discuss the relation of curvature and convexity of a closed plane curve.
- 7. (medium) Formulate and prove the isomperimetric inequality in Euclidean plane.
- 8. (hard) Classify the isotopy classes of immersed closed, connected curves in the plane (Whitney–Graustein).
- 9. (medium) Define curvature and torsion of a space curve. Discuss how (and when) they determine the curve.
- 10. (easy) Define the total angle of a space curve and explain its relation to curvature of the curve.
- 11. (hard) Define the bridge number of a space curve and discuss its relation to the curvature of the curve.
- 12. (hard) Show Fenchel's theorem (a sharp lower bound on total curvature of a regular space curve with implication if equality is attained).
- 13. (hard) Explain the Theorem of Fáry and Milnor and the idea of its proof.

2 Surfaces in \mathbb{R}^3

- 1. (easy) What is a regular surface in \mathbb{R}^3 ? Discuss different characterizations. Define its tangent space
- 2. (easy) Compute the formula for the (inverse of the) stereographic projection $\varphi : \mathbb{R}^2 \to S^2$ from the north pole of the unit sphere in \mathbb{R}^3 .
- 3. (easy) Define the first fundamental form of a regular surface and explain how its representation matrix changes under coordinate changes. Explain how this leads to the idea of Riemannian metrics and Riemann tensor.
- 4. (easy) How can the length of a curve on a surface be computed in local coordinates. Give a definition of the angle between tangent vectors in terms of the first fundamental form or the Riemann tensor.

- 5. (easy) Compute the first fundamental form of $S^2(R) \subset \mathbb{R}^3$ in the spherical coordinates given by $\varphi(\theta, \phi) = (R \sin \phi \cos \theta, R \sin \phi \sin \theta, R \cos \phi)$.
- 6. (easy) Define orientation of a regular surface. Define its normal, the Gauss- and the Weingarten map. Define the second fundamental form.
- 7. (medium) Compute the second fundamental form of a surface given as the graph of a smooth function at a critical point of that function.
- 8. (easy) Define principal curvature directions, mean and Gaussian curvature.
- 9. (hard) Explain their geometric meaning. Show that for any compact regular surface without boundary there is a point with positive Gaussian curvature.
- 10. (medium) What is the normal curvature of a curve in a regular surface F. What is its relation to the second fundamental form of F (Meusnier's formula)? How can $II_p(X,X)$ be expressed by principal curvature and normal curvature (Euler's formula)?
- 11. (medium) Compute the Gaussian curvature K of the saddle $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 y^2\}$ at (0, 0, 0). Explain why it is negative.
- 12. (medium) Let $K \in \mathbb{R}^3$ be a closed surface. Prove that the Gauss map $N: K \to S^2$ is surjective.

3 Riemannian Geometry

- 1. (easy) Define the notion of a differentiable manifold. Discuss examples.
- 2. (medium) What is a Riemannian manifold? Prove that a Riemannian metric defines a metric?
- 3. (medium) Let G be a n-dimensional Lie group. Explain why we can find vector fields $X_1, \ldots X_n$ such that $X_1(p), \ldots X_n(p)$ form a basis of T_pG for every $p \in G$.
- 4. (easy) Let (M, g) be a Riemannian manifold and ∇ be its Levi–Civita connection. Explain what are the properties that define ∇ uniquely.
- 5. (easy) Let (M, g) be a Riemannian manifold and let ∇ be a g-compatible connection. Prove that the curves γ which solve $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$ have constant speed.
- 6. (medium) Derive the formula for critical points of the energy functional on paths γ : $[a,b] \to M$ connecting two fixed points of the manifold.
- 7. (medium) Show that if γ is of minimal length among all curves of constant velocity then it is a minimum of the energy functional.
- 8. (hard) Show that if γ is a minimum of the energy functional then it is of minimal length among all differentiable curves connecting the tow points.
- 9. (medium) Write down the definition of the Christoffel symbols of ∇ . Compute them in local coordinates in terms of g.
- 10. (medium) Let $M \in \mathbb{R}^3$ be a hypersurface. Let g be the first fundamental form of M. Let $\nabla : T_pM \times \mathrm{Vect}(M) \to T_pM$ at $p \in M$ be defined by

$$\nabla_X Y := \pi^T(X(Y)),$$

- where $\pi^T: T_p\mathbb{R}^3 \to T_pM$ is the projection to the tangent space of T_pM , X(Y) denotes as usual the derivavtive at $p \in M$ in direction of $X \in T_pM$ of each component of the vector field Y around p. Show that ∇ is the Levi–Civita connection of g.
- 11. (hard) Define the geodesic curvature $\kappa_g : \text{Im}\gamma \to \mathbb{R}$ for a geodesic γ . State the Gauss–Bonnet theorem and give one example that verifies it. Give an idea how one can go about proving this theorem.
- 12. (easy) Define the exponential map \exp_p of a Riemannian manifold M. Explain why it is a diffeomeorphism in a neighborhood of $0 \in T_pM$. What are normal coordinates? How does the Riemann metric tensor look like in normal coordinates.
- 13. (hard) Formulate and prove Gauss' Lemma.
- 14. (hard) Express Gauss curvature in terms of the metric tensor in normal coordinates for a surface.
- 15. (medium) Explain why the two topologies (open sets) the one originally given for a manifold and the one induced by the metric d_q of a Riemannian metric g agree.
- 16. (medium) Formulate the Theorem of Hopf-Rinow. Give some examples of complete and incomplete Riemannian manifolds.
- 17. (hard) Sketch the ideas behind the proof of the Theorem of Hopf-Rinow.