
Geodesics, exponential map and completeness
in Riemannian geometry

K. Mohnke

Abstract

This is s short script of the classes on the Gauss–Lemma and the
Hopf–Rinow-Theorem. The notes are supplementary material. The
pictures were presented in class. If there are typos I hope they can be
corrected using your notes.

1 Exponential map and normal coordinates

Let (M, g) be an n–dimensional Riemannian manifold, p ∈ M,X ∈ TpM .
We denote by γX : (a, b) → M , γX(0) = p, γ̇X(0) = X the unique geodesic
which is a solution of the 2nd order ordinary differential equation

∇γ
∂
∂t

γ̇ = 0.

Then for any λ > 0 the geodesic γλX : (a/λ, b/λ)→M satisfies

γλX(t) = γX(λt).

Denote by the open interval IX ⊂ R the maximal solution for given initial
values p,X (0 ∈ IX), then for λ 6= 0 IλX = IX/λ. As usual, we assume that
g is sufficiently differentiable. Then by general theory of ODE, we know that
γX depends differentiably on p and X. In particular, for t ∈ IX and ε > 0
there exists a δ > 0 such that for all X ′ ∈ TpM with ‖X −X ′‖gp < δ and all
t′ ∈ R with |t− t′| < ε, t′ ∈ IX′ and

(t′, X ′) ∈ (t− ε, t+ ε)× {X ′ ∈ TpM |X −X ′ < δ} 7→ γX′(t′) ∈M
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is a differentiable map. Consequently

Vp := {X ∈ TpM | 1 ∈ IX} ⊂ TpM

is an open subset which is starshaped with respect to 0.

Proposition 103: (1) expp : Vp →M defined by

expp(X) := γX(1)

is a differentiable map. With the identification T0Vp = TpM and Texpp(0)M =
Tp (since expp(0) = p we have

d0 expp = idTpM

(2) There exists a rp > 0 such that B(p, rp) := expp |BTpM,gp (0, rp) is a dif-
feomorphism onto its image. Choose an orthonormal basis {X1, ..., Xn} of
(TpM, gp). Then the parametrization

(x1, ..., xn) ∈ Bn(rp) ⊂ Rn 7→ expp(x1X1 + ...+ xnXn) ∈M

defined on the euclidean ball define a coordinate chart around p, called nor-
mal coordinate chart while (x1, ..., xn) are called normal coordinates.
(3) With respect to normal coordinates the Riemann tensor satisfies for all
i, j, k ∈ {1, ..., n}

gij(0) = δij
∂gij
∂xk

(0) = 0.

Proof: (1) The differentiabilty was discussed prior to the proposition. Now

d0 expp(X) =
d

dt
|t=0 expp(tX) =

d

dt
γtX(1) =

d

dt
γX(t) = X

by definition of γX .
(2) Since d0 expp = idTpM is invertible by the inverse function theorem there
exists an open neighborhood of 0 which can be assumed to be a euclidean
ball, which satisfies the claim.
(3) gij(0) = δij follows directly from d0 expp = idTpM and the orthonormality
of {Xi}i. Now define the geodesics γij(t) := expp(t(Xi+Xj)), γi(t) expp(tXi)
for sufficiantly small t. Then

0 = (∇γij
∂
∂t

γ̇ij)(t) =
(
∇ ∂

∂xi
+ ∂
∂xj

(
∂

∂xi
+

∂

∂xj
)
)

(γij(t).
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For the Levi-Citvita connection ∇. Similarly,(
∇ ∂

∂xi

∂

∂xi

)
(γi(t) = 0

(
∇ ∂

∂xj

∂

∂xj

)
(γj(t) = 0

At t = 0 these three identities amount to

0 =
(
∇ ∂

∂xi

∂

∂xj
+∇ ∂

∂xj

∂

∂xi
+∇ ∂

∂xi

∂

∂xi
∇ ∂

∂xj

∂

∂xj

)
(0)

and using that ∇ is torsion–free we obtain for all i, j(
∇ ∂

∂xi

∂

∂xj

)
(0) = 0.

Finally, we use that ∇ is metric to obtain

∂gij
∂xk

(0) =
∂

∂xk
g(

∂

∂xi
,
∂

∂xj
)(0) = g(∇ ∂

∂xk

∂

∂xi
(0),

∂

∂xj(0)
)+g(

∂

∂xi
(0),∇ ∂

∂xk

∂

∂xj
)(0)) = 0 �

Corollary: For all i, j, k we have in normal coordinates Γkij(0) = 0.

The follwoing observation by C.F. Gauß is crucial in proving local minimality
of geodesics.

Theorem 104 [Gauss–Lemma]: Let (M, g) be a Riemannian manifold of di-
mension n, p ∈ M , X ∈ Vp ⊂ TpM . Then for any other Y ∈ TpM we
have

gexpp(X)(dX expp(X), dX expp(Y )) = gp(X, Y ), (1)

where we have, once again identified TX(TpM) = TpM .

In particular, if δ̃ : (−ε, ε)→ Vp satisfies δ̃‖gp ≡ r, then for δ := expp ◦(̃δ)

δ̇(0) ⊥ γ̇X(1).

Remark: Equation (1) does NOT mean, that expp preserves all angles!

Proof: To shorten notation we introduce ϕ : (−ε, ε)× [0, 1| →M fgiven by

ϕ(s, t) := expp(t(X + sY ))

for ε > 0 sufficiently small. Then

dX expp(X) = γ̇X(t) =
∂ϕ

∂t
(0, 1)

dX expp(Y ) =
∂

∂s
expp(X + sY ) =

∂ϕ

∂t
(0, 1).
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Hence we need to show

gexpp(X)(
∂ϕ

∂t
(0, 1),

∂ϕ

∂t
(0, 1) = gp(X, Y ).

Since t 7→ ϕ(s, t) defines a geodesic for all s we have

∇ϕ
∂
∂t

∂ϕ

∂t
(s, t) = 0

and

‖∂ϕ
∂t

(s, t)‖gϕ(s,t) = ‖∂ϕ
∂t

(s, t)‖gϕ(s,0) = ‖X + sY ‖p

for all s, t Using this and that ∇ is metric and torsion free we compute

∂

∂t
g(
∂ϕ

∂t
,
∂ϕ

∂s
) = g(∇ϕ

∂
∂t

∂ϕ

∂t
,
∂ϕ

∂s
) + g(

∂ϕ

∂t
,∇ϕ

∂
∂t

∂ϕ

∂s
)

= g(
∂ϕ

∂t
,∇ϕ

∂
∂s

∂ϕ

∂t
)

=
1

2

∂

∂s
g((

∂ϕ

∂t
, (
∂ϕ

∂t

=
1

2

∂

∂s
gp(X + sY,X + sY )

= sgp(Y, Y ) + gp(X, Y ).

Summing up we obtain

∂

∂t
g(
∂ϕ

∂t
,
∂ϕ

∂s
)(0, t) = gp(X, Y ).

Together with

g(
∂ϕ

∂t
(0, 0),

∂ϕ

∂s
(0, 0)) = gp(X, 0) = 0

and integrating over t we obtain the desired identity. �

Specializing to surfaces dimM = 2 Gauß’ Lemma yields the following. For
a othonormal basis {X1, X2} ⊂ TpM we denote by F : (0, rp)× R→M

F (r, ϕ) := expp(r(cosϕX1 + sinϕX2))

the so-called geodesic normal coordinates. With respect to these coordinates
the Riemann tensor has the form

g(r, ϕ) =:

(
grr grϕ
gϕr gϕϕ

)
=

(
1 0
0 f 2(r, ϕ)

)
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for a differentiable function f : (0, rp)× R→ (0,∞) satisfying

lim
r→0

f(r, ϕ) = 0 lim
r→0

∂f

∂r
= 1.

Indeed, the radial vector field is perpendicular to the angular vector field on
TpM by the choice of X1, X2, hence the diagonal form of g is a consequence
of Theorem 104. Since r 7→ F (r, ϕ) defines a geodesic for all ϕ the left upper
entry follows from ‖ cosϕX1 + sinϕX2‖ = 1. Finally,

f 2(r, ϕ)

r2
= gF (r,ϕ)(dr,ϕF (− sinϕX1 + cosϕX2,− sinϕX1 + cosϕX2)

= sin2 ϕg11 + cos2 ϕg22 + 2 sinϕ cosϕg12

where gij are the coefficients of the Riemann tensor w.r.t. the normal co-
ordinates defined by {X1, X2}. Since gij is continuous and gij(0) = δij we
obtain

lim
r→0

f(r, ϕ) = lim
r→0

√
sin2 ϕg11 + cos2 ϕg22 + 2 sinϕ cosϕg12 = 0

and

lim
r→0

∂f

∂r
= lim

r→0

f(r, ϕ)

r
= lim

r→0

√
sin2 ϕg11 + cos2 ϕg22 + 2 sinϕ cosϕg12 = 1.

For instance one deduces for the Gaussian curvature

K(r, ϕ) = − 1

f(r, ϕ)

∂2f

∂r2
(r, ϕ).

Corollary: (1) Let M1,M2 be surfaces with a Riemannian metric which have
the same constant Gaussian curvature K, then they are locally isometric.
(2) If B(p, r) := expp(B

2(r)) for r < rp and normal coordinates. Then∫
B(p,r)

Kdvolg = 2π

∫ 2π

0

∂f

∂r
dϕ.

Proof: (1) f1, f2 are determined by K. Hence the isometry is provided by
expM2

p2
◦(expM1

p1
)−1 : B1(p1, r)→ B2(p2, r).
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(2) We have Kdvolg = fdrdϕ and thus∫
B(p,r)

Kdvolg = −
∫ r

0

∫ 2π

0

∂2f

∂r2
dϕdr

= −
∫ 2π

0

[∂f
∂r

(s, ϕ)
]∣∣∣r
s=0

dϕ

= −
∫ 2π

0

(
∂f

∂r
(r, ϕ)− 1)dϕ. �

Another corollary of Theorem 104 is the following

Lemma 105: Similar to previous notation denote byB(p, r) = expp(BTpM,gp(r))
the image of the closed euclidean ball, where r < rp, s.t. expp |BTpM,gp (r) is

a diffeomorphism onto its image. Let γ : [0, T ] → B(p, r) be a piecewise
differentiable curve s.t. γ(0) = p, γ(T )inS(p, r) = ∂B(p, r). Then the length
`(γ) ≥ r with equality if and only if γ(t) = expp(tX) with X ∈ TpM ,
‖X‖gp = 1.

Proof: There exist r : [0;T ] → [0, r], η : [0, T ] → Sp := {X ∈ TpM | ‖X‖ =
1}, such that

γ(t) = expp(r(t)η(t))

where r is piecewise differentiable and continuous and uniquely determined
and η is piecewise differentiable but possibly not continuous at t with r(t) =
0. Then

γ̇(t) = dγ(t) expp(ṙ(t)η(t)) + dγ(t) expp(r(t)η̇(t)). (2)

Since ‖η(t)‖ ≡ 1 gp(η̇(t), η(t) = 0 whereever η̇ is defined. By the Gauss–
Lemma decomposition (2) is orthogonal. Hence

‖γ̇(t)‖gγ(t) ≥ ‖dγ(t) expp(ṙ(t)η(t))‖
= |ṙ(t)|‖dγ(t) expp(η(t))‖
= |ṙ(t)|

and therefore

`(γ) ≥
∫ T

0

|ṙ(t)|dt ≥
∣∣∣ ∫ T

0

ṙ(t)
∣∣∣ = r(T )− r(0) = r.

Equality holds iff η(t) is piecewise constant and ṙ ≥ 0. In particular, ṙ =
1 wherever η is constant and hence η is constant everywhere, since γ is
continuous. �.

6



Now we are ready to derive the extremal property of geodesics.

Theorem 106: Geodesics are locally minimizing: Let (M, g) be a Riemannian
manifold, γ : (a, b) → M be a geodesic. Then for all t0 ∈ (a, b) there exists
an ε > 0 such that for all t1 ∈ (a, b) with |t1 − t0| < ε

`(γ||t0, t1]) = dg(γ(t0), γ(t1)).

More precisely, for δ : [s0, s1] → M piecewise differentiable and continuous
with δ(s0) = γ(t0), δ(s1) = γ(t1) we have

`(δ) ≥ `(γ|[t0,t1])

with equality iff there exists a piecewise differentiable reparametrization τ :
[s0, s1]→ [t0, t1], which is in particular weakly monotone, such that δ = γ ◦τ .

Proof: For fixed t0 choose ε > 0 such that expγ(t0) |B(ε) is a diffeomor-
phism onto its image. There exists s′ ∈ (s0, s1] such that δ(s′) ∈ S(p, ε) and
δ([s0, s

′]) ⊂ B(p, ε). Then by the previous lemma

`(δ) ≥ `(δ|[s0,s′] ≥ ε = `(γ|[t0,t1]

where t1 = t0±ε. Equality holds iff δ|[s′,s1] ≡ γ(t1) and δ|[s0,s′] is a reparametriza-
tion of γ|[t0,t1] and the claim follows. �.

Corollary: We have for sufficiently small balls in the metric space (M,dg)

expp(BTpM,gp(r)) = B(M,dg)(p, r)

for r < rp.
In particular, the topology of the metric space (M,dg) coincides with the
original topology of the manifold M .

Proof: (1) We show that for each p ∈M a sufficiently small ball B(M,dg)(p, r)
is open in the original topology. This follows if r < rp from the identity.
(2) Let U ⊂ M be open. Then (U, g|U) is a Riemannian manifold. Let
p ∈ U . For p ∈ U exists ε > 0 such that expp |BTpM,gp (ε) : BTpM,gp(ε)→ U is a
diffeomeorhism onto its image in, in particular, B(M,dg)(p, ε) ⊂ U . Therefore,
every p ∈ U is an interior poiint of U w.r.t. the metric dg and hence U is
open in (M,dg). �

Proposition 107: (M, g) is a connected Riemannian manifold, p, q ∈ M .
Let γ : [a, b]→M , continuous, piecewise differentiable, ‖γ̇(t)‖ = 1, wherever
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defined, γ(a) = p, γ(b) = q. Let γ be locally minimal. Then γ is differentiable
(hence ‖γ̇(t)‖ = 1 everywhere) and a geodesic. In particular, the conclusion
holds if `(γ) = d(p, q), i.e. γ is minimal along all such curves connecting p
and q.

Proof: (1) Pick any point t ∈ [a, b] and ε > 0 such that exp |γ(t)|B(0,ε) is
a diffeomeorphism onto its image. By the Gauss–Lemma we conclude, that
γ|[t−ε,t] and γ|[t,t+ε] are geodesics. If γ is differentiable at t, it follows, that
γ[t−ε,t+ε] is a geodesic.
(2) In the situation above let us assume that γ is not differentiable at t, i.e.

v+ := lim
s↓t

γ̇(s) 6= lim
s↑t

γ̇(s) =: v−.

Then in B(0, ε) ⊂ Tγ(t)M w.r.t. the euclidean norm of gγ(t) we have ‖v+ −
v−‖ =: c < 2. On the other hand, using the result on normal coordinates
we find ‖gexpp(v) − gp‖ ≤ c′‖v‖2 w.r.t. the same norm. Let ε > δ > 0 be
suficiently small and define γ̃ : [a, b]→M via

γ̃(s) =

{
γ(t) if s 6∈ [t− δ, t+ δ]

expp((s− t− δ)/2v− + (s− t+ δ)/2v+ if s ∈ [t− δ, t+ δ].

This is a continuous, piecewise differentiable curve connecting p and q. The
newly inserted piece is regular (hence can be reparametrized to fulfil the
requirement on the velocity) and has length

`0 ≤ cδ
√

1 + c′δ2.

and therefore

`(γ̃) = `(γ)−`(γ|[t−δ,t])−`(γ|[t,t+δ])+`0 = `(γ)−2δ+`0 ≤ `(γ)−δ(2−c
√

1 + c′δ2).

Since c < 0 after choosing δ sufficiently small we find

`(γ̃) < `(γ),

i.e. γ̃ shortcuts γ. Notice that the inserted piece stays in the δ–ball of γ(t)
hence contradicting local minimality property of γ. �

Theorem 108 [Hopf-Rinow]: Let (M, g) be a connected Riemannian mani-
fold.
(a) The following conditions are equivalent:
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(1) (M, g) is geodesically complete: For any p ∈ M,X ∈ TpM there exists
a geodesic γ : R → M with γ(0) = p and γ̇(0) = X, i.e. the differential
equation admits global solution on all of R.
(2) (M,dg) is a complete metric space.
(3) Each closed, bounded subset of (M,dg) is compact.
(4) There exists a p ∈M such that expp : TpM →M is defined on the whole
tangent space.

Examples: (1) Any compact metric space is complete. Hence (M, g) is com-
plete for any compact manifold M since it is also compact w.r.t. the metric
dg.
(2) (Rn, geuclid.) and (H, gH) are geodesically complete (obvious for the first,
needs to be checkes for the second). Hence they are complete as metric
spaces, which you knew already for the first, of course.
(3) Any metric space can be completed. Let (M,dg) denote the completion
of (M,dg). However, (M, g) not necessarily extends to a differentiable Rie-
mannian manifold (M, g), which can be easily seen for cones. Even worse, let
N is a manifold not diffeomeorphic to a sphere, h a Riemannian metric on N .
Consider the Riemannian metric g on N × (0,∞) given by g = (r2h) ⊕ dr2
w.r.t. the splitting T (N × (0,∞)) = TN ⊕R and for parameter r ∈ (0,∞)
and dr2(s, t) = st on the real line. Then it is not hard to see that topologi-
cally M = N × [0,∞)/N ×{0}, i.e. all points of N ×{0} are identified. This
is the cone over N which is a manifold only if N is diffeomeorphic to a sphere
of dimension dimN .

We present the crucial idea the proof of Theorem 108 in the following

Lemma 109: For p ∈M let expp : Tp →M be defined on all of TpM . Recall
that M was assumed to be connected. Then for any q ∈ M there exists a
minimizing geodesic γ : [0, d(p, q)]→M connecting p and q.

Proof: Fix ε > 0 such that expp |BTpM (0,ε) is a diffeomeorphism onto its
image BM(p, ε). For q ∈ BM(p, ε) the claim follows from the Gauss-Lemma.

Let q 6∈ BM(p, ε). Fix r < ε. Since the euclidean sphere is compact and
expp continuous the image Sr(p) := expp(STpM(0, r)) is compact. Moreover,
dg(q, .) : M → [0,∞) is continuous, hence it attains its minimum on campact
subsets. Let m ∈ Sr(p) be such that

d(q,m) = min{d(q, x)|x ∈ Sr(p)

Then d(p,m) + d(m, q) = d(p, q). Indeed, any curve γ : [0, T ]→M connect-

9



ing p and q must pass through Sr(p), i.e. there exists a t0 ∈ [0, T ] such that
γ(t0) ∈ Sr(p) and γ(t) ∈ BM(p, r) for t < t0. Then by the Gauss–Lemma

`(γ) = `(γ|[0,t0])+`(γ|[t0,T ] ≥ r+d(γ(t0), q) = d(p,m)+d(γ((t0), q)) ≥ d(p,m)+d(m, q).

Let v ∈ TpM be the unique tangent vector, such that ‖v‖ = 1 and expp(v) =
m. Let γ : R →M be the geodesic given by γ(t) = expp(tv).

Claim: γ(d(p, q)) = q!

Define the subset I ⊂ [0, d(p, q)] via

I := {t ∈ [0, d(p, q)]∀s ≤ t :| s+ d(γ(s), q) = d(p, q)}.

The claim follows from d(p, q) ∈ I.

By the discussion above [0, ε) ⊂ I.

By continuity of the metric d(., .) we conclude I is a closed subset. Hence it
remains to show, that I is also open. Let t0 > 0 and assume that t0 < d(p, q).
Now let 0 < δ < t0 such that t0 + δ < d(p, q). We will show that t0 + δ ∈ I
proving [0, t0 + δ] ⊂ I from which the openess of I follows.

As above let n ∈ S(γ(t0), δ) be such that

d(n, q) = min{d(x, q) | x ∈ Sδ(γ(t0))}.

Let γ0 : [0, δ]→ BM(γ(t0), δ) be the unique geodesic connecting γ(t0) and n
(see above). Analogously, we have

δ + d(n, q) = d(γ(t0), q).

Now we have

t0 + δ + d(n, q) = t0 + d(γ(t0), q) = d(p, q)

since t0 ∈ I by assumption. Therefore

t0 + δ + d(n, q) = d(p, q) ≤ d(p, n) + d(n, q)

and hence

t0 + δ ≤ d(p, n) ≤ d(p, γ(t0) + d(γ(t0, n) = t0 + δ
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and hence
t0 + δ = d(p, n).

We define γ̃ : [0, t0 + δ] by

γ̃(t) :=

{
γ(t) for t ∈ [0, t0]

γ0(t− t0) for t ∈ [t0, t0 + δ].

which is continuous, piecewise differentiable with ‖γ̇(t)‖ = 1 whereever it is
defined. We have

`(γ̃) = t0 + δ = d(p, n),

hence minimal w.r.t. all such curves connecting p and γ(t0). By Proposition
107, γ̃ is a geodesic connecting the two points and since γ|[0,t0] = γ̃|[0,t0] by
uniqueness of solutions of ODE we conclude γ̃ = γ[0,t0+δ] and, in particular,
γ(t0 + δ) = n.

Now

d(p, q) = (t0 + δ) + d(n, q) = `(γ̃) + d(n, q) = d(p, γ(t0 + δ)) + d(γ(t0 + δ), q)

and hence t0 + δ ∈ I. �

Proof of Theorem 108:(b) follows from (a) (4) and Lemma 109.

(a) (4)⇒(3) Let p ∈M such that expp : Tp →M is defined on all of TpM . Let
A ⊂M be closed and bounded w.r.t. metric dg. A bounded means d(p,A) =

R < ∞. Then by Lemma 108 A ⊂ expp(BTpM(0, R)). But BTpM(0, R) ⊂
TpM is compact and since expp is continuous expp(BTpM(0, R)) ⊂M is com-
pact. Since A is also assumed to be a closed subset it follows that A is
compact.

(3)⇒(2) Let {pn}n be a Cauchy sequence of the metric space (M,dg). Then
A := {pn | n ∈ N} is bounded and therefore its closure A is bounded (and
closed) and hence compact. In particular, a subsequence of {pn}n converges
in A ⊂M . Since {pn}n was assumed to be a Cauchy sequence it follows that
{pn}n converges to the same limit. Hence (M,dg) is complete.

(1)⇒(4) (1) is statement (4) for all p ∈M .

(2)⇒(1) Let γ : (a, b) → M be a geodesic, ‖γ̇‖ ≡ 1. b < ∞. We claim that
γ can be extended as a geodesic beyond b. The argument will be similar if
a > −∞.
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Let tn ∈ (a, b), such that tn → b. Then

d(γ(tn), γ(tm)) = `(γ|[tn,tm]) = |tn − tm|.

Hence {γ(tn)}n is a Cauchy sequence in (M,dg) and by condition (2) there
is a limit q ∈ M , i.e. limn γ(tn) = q. Let {t′n}n be another such sequence.
Then

d(γ(t′n), γ(tn)) = |t′n − tn| → 0

and hence γ̃ : (a, b]→M defined by

γ̃(t) =

{
γ(t) if t ∈ (a, b)

q if t = b.

is continuous.

Let ε > 0 such that expq |BTqM (0,ε) is a diffeomorphism onto its imageBM(q, ε).
By its continuity there is a s0 ∈ (a, b) such that

γ̃([s0, b]) ⊂ BM(q, ε).

Note that its length `(γ̃) = b − s0 = d(γ(s0), q). Let v ∈ TqM , ‖vq‖ = 1 be
such that expq((s0−b)v) = γ(s0). Then by Theorem 107 γ̃(t) = expq((t−b)v)
for t ∈ [s0, b] and hence γ̄ : (a, b+ ε)→M with

γ̄(t) :=

{
γ(t) for t ∈ (a, b)

expq((t− b)v) for t ∈ [b, b+ ε)

defines a differentiable curve which is a geodesic on each part and hence a
geodesic. �
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