Problem Set 1

Differential Geometry II Summer 2020

Problem 1

Prove Proposition 5 of the lecture, in particular (3): We have the following relations

$$\begin{aligned} &\text{for } v, w \in V, \alpha \in \Lambda^k(V^*): \\ & v \lrcorner (w \lrcorner \alpha) = -w \lrcorner (v \lrcorner \alpha) \\ &\text{for } v \in V, \alpha \in \Lambda^k(V^*), \ \beta \in \Lambda^\ell(V^*): \\ & v \lrcorner (\alpha \land \beta) = (v \lrcorner \alpha) \land \beta + (-1)^k \alpha \land (v \lrcorner \beta) \\ &\text{for } F: V \to W \text{ linear, } v \in V, \alpha \in \Lambda^k(V^*): \\ & v \lrcorner (F^* \alpha) = F^*(F(v) \lrcorner \alpha). \end{aligned}$$

Problem 2

Prove Lemma 6 of the lecture:

(1) The definition of dV is independent of the choice of an oriented orthonormal basis.

(2) It has length one: $\langle dV, dV \rangle = 1$ and $\Lambda^n(V) = \mathbb{R}dV$.

(3) For the dual basis $\{\alpha_1, ..., \alpha_n\}$ of a oriented orthonormal basis as above we have

 $dV = \alpha_1 \wedge \ldots \wedge \alpha_n.$

Problem 3

Prove Lemma 7 of the lecture: (1) The map

$$*: \Lambda^k(V^*) \longrightarrow \Lambda^{n-k}(V^*)$$

is an isometry which is referred to as **Hodge-*-operator**. (2) On k-forms $*^2 = * \circ * = (-1)^{k(n-k)}$. (3) For $\alpha, \beta \in \Lambda^k(V^*)$ we have

$$\alpha \wedge *\beta = \langle \alpha, \beta \rangle dV.$$

Problem 4

Study problems 1,2,3 and 5 of the book of Agricola and Friedrich, pages 8 and 9

Problem 5

Prove Cartan's Lemma (Problem 4 of the book of Agricola and Friedrich, page 9)

Problem 6

Study problem 8 of the book of Agricola and Friedrich, page 9 for the case of a euclidean 4–dimensional vector space V, i.e. q = 0 in their notation.

Problem 7

Study problems 6 and 7 of the book of Agricola and Friedrich, page 9.