Problem Set 1
 Differential Geometry II Summer 2020

Problem 1

Prove Proposition 5 of the lecture, in particular (3):
We have the following relations

$$
\begin{aligned}
& \text { for } v, w \in V, \alpha \in \Lambda^{k}\left(V^{*}\right) \\
& \qquad \begin{aligned}
v\lrcorner(w\lrcorner \alpha) & =-w\lrcorner(v\lrcorner \alpha) \\
\text { for } v \in V, \alpha \in \Lambda^{k}\left(V^{*}\right), \beta & \in \Lambda^{\ell}\left(V^{*}\right): \\
v\lrcorner(\alpha \wedge \beta) & \left.=(v\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(v\lrcorner \beta\right) \\
\text { for } F: V \rightarrow W \quad \operatorname{linear}, v & \in V, \alpha \in \Lambda^{k}\left(V^{*}\right): \\
v\lrcorner\left(F^{*} \alpha\right) & \left.=F^{*}(F(v)\lrcorner \alpha\right) .
\end{aligned}
\end{aligned}
$$

Problem 2

Prove Lemma 6 of the lecture:
(1) The definition of $d V$ is independent of the choice of an oriented orthonormal basis.
(2) It has length one: $\langle d V, d V\rangle=1$ and $\Lambda^{n}(V)=\mathbb{R} d V$.
(3) For the dual basis $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of a oriented orthonormal basis as above we have

$$
d V=\alpha_{1} \wedge \ldots \wedge \alpha_{n}
$$

Problem 3

Prove Lemma 7 of the lecture:
(1) The map

$$
: \Lambda^{k}\left(V^{}\right) \longrightarrow \Lambda^{n-k}\left(V^{*}\right)
$$

is an isometry which is referred to as Hodge-*-operator.
(2) On k-forms $*^{2}=* \circ *=(-1)^{k(n-k)}$.
(3) For $\alpha, \beta \in \Lambda^{k}\left(V^{*}\right)$ we have

$$
\alpha \wedge * \beta=\langle\alpha, \beta\rangle d V
$$

Problem 4

Study problems $1,2,3$ and 5 of the book of Agricola and Friedrich, pages 8 and 9

Problem 5

Prove Cartan's Lemma (Problem 4 of the book of Agricola and Friedrich, page 9)

Problem 6

Study problem 8 of the book of Agricola and Friedrich, page 9 for the case of a euclidean 4dimensional vector space V, i.e. $q=0$ in their notation.

Problem 7

Study problems 6 and 7 of the book of Agricola and Friedrich, page 9.

