Problem Set 2

Differential Geometry II Summer 2020

Problem 1

Prove Theorem 11 (3), that $F^*d\alpha = d(F^*\alpha)$ for $\alpha \in \Omega^k(V)$ and a differentiable map F in a conceptually easier way: $U \subset \mathbb{R}^n \to V \subset \mathbb{R}^m$ between open subsets:

Explain first, how $F^*(df) = d(F^*f)$ for a differentiable function $f \in C^{\infty}(V)$ follows and use then that F^* is \mathbb{R} -linear and respects the wedge-product. (That was suggested by a student in class).

Problem 2

(1) For F; U; V as in Problem 1, explain how F^* induces a linear map

$$F^*: H^k_{DR}(V) \longrightarrow H^k_{DR}(U)$$

and show that it is well-defined.

(2) Show that if for two such maps F,G for which there exists a sequence of homomorphisms $P^k:\Omega^k(V)\to\Omega^{k-1}(U)$ such that on $\Omega^k(V)$

$$F^* - G^* = P^{k+1} \circ d + d \circ P^k$$

than $F^* = G^* : H^k_{DR}(V) \longrightarrow H^k_{DR}(U)$.

Problem 3 [Line integrals]

Let $\gamma:[a,b]\to U$ be a differentiable map, $\alpha\in\Omega^1(U)$ be a differential form. We define the line integral of α over γ to be

$$\int_{\gamma}\alpha:=\int_{a}^{b}\alpha_{\gamma(t)}(\dot{\gamma}(t))dt.$$

- (1) Show that for an oriented reparametrization $\varphi:[c,d]\to [a,b]$ we obtain the same value for the integral of α over $\gamma\circ\varphi:[c,d]\to U$. In fact, try to show that the claim remains valid if φ is not necessarily a orientation preserving diffeomorphism but just required to be differentiable with $\varphi(c)=a$ and $\varphi(d)=b$.
- (2) Assume that γ is a closed curve, i.e. $\gamma(a) = \gamma(b)$. Then

$$\int_{\gamma} df = 0$$

for any smooth function $f \in C^{\infty}(U)$.

(3) Let $\alpha \in \Omega^1(U)$ be closed, i.e. $d\alpha = 0$. Let $\Gamma : [a,b] \times [0,1] \to U$ be differentiable, $\Gamma(a,t) = \Gamma(b,t)$ for all t. Then for $\gamma_t := \Gamma(.,t) : [a,b] \to U$ the line integrals

$$\int_{\gamma_{\star}} \alpha$$

do not depend on t. Hint: Differentiate the integral w.r.t. to t.

Problem 4 [Winding number]

Consider the differential 1-form $\lambda \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$

$$\lambda_{(x,y)} = \frac{xdy - ydx}{x^2 + y^2}.$$

- (1) Show that λ is closed.
- (2) Compute the line integral of λ over $\gamma:[0,1]\to\mathbb{R}^2\setminus\{0\},\ \gamma(t)=(\cos(2\pi t),\sin(2\pi t)).$
- (3) What follows for the class $[\lambda] \in H^1_{DR}(\mathbb{R}^2 \setminus \{0\})$? Solve Problems 13 and 14 of the book of Agricola and Friedrich, page 45.
- (4) Conclude that there is no differentiable map $H:[0,1]\times[0,1]\to\mathbb{R}\setminus\{0\}$, such that H(0,t)=H(1,t) for all $t, H(s,0)=\gamma(s)$ for all s and H(.,t) is constant.

Problem 5 [Brouwer's Fixed Point Theorem]

(1) Show that there is no differentiable map $\varphi: D^2 \to S^1$ from the closed unit disk to its boundary which restricts to the identity on S^1 . Hint: assume it does. Pull back λ from Problem 4. Use Problem 3 (3) to conclude that

$$\int_{\gamma} \lambda = 0$$

for γ from Problem 4 (2) and thus a contradiction to the computation there.

(2) Show that every differentiable map $\varphi: D^2 \to D^2$ has a fixed point, by assuming the contrary and constructing a map as described in (1). Hint: Consider the line through $x \in D^2$ and $\varphi(x) \in D^2$. Remark: It follows that the claim is also true for any continuous function but this is not part of the homework problem.)

Problem 6

Study problem 3 of the book of Agricola and Friedrich, page 43.