Problem Set 3
 Differential Geometry II Summer 2020

Problem 1

Following discussions about Problem 4 of Problem Set 2 in the tutorial on April 30:
(1) Let $\pi: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}$ be given by $\pi(s, t):=e^{s+\mathrm{i} t}$. (for those who know this term: this is the universal covering of $\mathbb{R} \backslash\{0\})$. Assume $\alpha \in \Omega^{1}(\mathbb{R} \backslash\{0\})$ is a closed 1-form, $d \alpha=0$ and for $\gamma:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}, \gamma(t)=(\cos (2 \pi t), \sin (2 \pi t))$,

$$
\int_{\gamma} \alpha=0 .
$$

Then α is exact, i.e. there exists a smooth function $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ with $d f=\alpha$. Hint: Consider the pull-back $\pi^{*} \alpha$. Explain why there is a smooth function $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\pi^{*} \alpha=d \tilde{f}$. Now, prove that $\tilde{f}(s, t+2 \pi)=\tilde{f}(s, t)$ and conclude the claim. You need to explain that

$$
\int_{\gamma_{r}} \alpha=0
$$

for $\gamma_{r}:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}, \gamma(t)=(r \cos (2 \pi t), r \sin (2 \pi t))$ for all $r>0$.
(2) Discuss Problem 4 (3) of Problem Set 2: The cohomology class of the 1 -form λ given there generates $H_{D R}^{1}(\mathbb{R} \backslash\{0\})$: Pick any closed one-form μ on $\mathbb{R} \backslash\{0\}$ and define

$$
a:=\frac{1}{2 \pi} \int_{\gamma} \mu \in \mathbb{R} .
$$

Show that $[\mu]=a[\lambda] \in H_{D R}^{1}(\mathbb{R} \backslash\{0\})$.
Problem 2
(1) Determine $H_{D R}^{1}\left(S^{1}\right)$. The ideas of Problem 1 could be helpful. Since $\operatorname{dim} S^{1}=1$ it is somewhat simpler.
(2) Hard: Determine $H_{D R}^{1}\left(S^{n}\right)$ "by hand" without technology from algebraic topology.

Problem 3

Let M be a manifold without boundary, $f: M \rightarrow \mathbb{R}$ a smooth function, $c \in \mathbb{R}$ a regular value, i.e. for all $p \in M, f(p)=c$ we have $d_{p} f \neq 0$. Then the sublevel set

$$
M^{c}:=\{p \in M \mid f(p) \leq c\}
$$

is a smooth manifold with boundary: $\partial M^{c}=\{p \in M \mid f(p)=c\}$.

Problem 4

Show that the boundary of a smooth n-dimensional manifold with boundary is an $(n-1)-$ dimensional manifold without boundary.

Problem 5

For some of you that problem is almost a repetition from these facts for manifolds without boundary.
(1) Explain how the tangent space of a manifold with boundary ata point p is a real vector space.
(2) Show that an inward pointing vector cannot be outward pointing.
(3) Show that the differential af a smooth map between manifolds with boundary is a linear map between vector spaces.

Problem 6

Prove Lemma 24 of the lecture:Let M be an oriented manifold with boundary of dimension $m \geq 2$. Then the tangent spaces at all boundary points can be oriented so that there exists a chart around each which is oriented in the sense of Definition 23. In particular, the boundary can be oriented so that for any $p \in \partial M$ an oriented basis of $T_{p}(\partial M)$ extended by an outward pointing tangent vector put in the first position gives an oriented basis of $T_{p} M$.

