Problem Set 4

Differential Geometry II Summer 2020

Problem 1

- (a) Step (1) in Proof of Brouwer's fixed point theorem: Suppose $F: B^n \to B^n$ is a smooth map without fixed points. Let $f: B^n \to S^{n-1}$ be the map which assigns to $x \in B^n$ the intersection of the line through x and F(x) with S^{n-1} such that the segment [f(x), F(x)] contains x. Explain why that f is smooth.
- (b) Show how any continuous map $F: B^n \to B^n$ can be approximated uniformly by a sequence of smooth maps $F_n: B^n \to B^n$.
- (c) Let (x_n) be a sequence of fixed points of F_n from (2) which converges. Show that the limit is a fixed point of F.

Problem 2

Show that a convex linear combination of positive definite symmetric bilinear forms is also a positive definite symmetric bilinear form.

Problem 3[Volume Form]

Let (M,g) be an oriented Riemannian manifold with boundary.

(a) Let (U, φ, V) be an oriented coordinate chart, $g = g_{ij}$ the Gram matrix w.r.t. the coordinate vector fields. Show that

$$\varphi^*(dM) = \sqrt{\det(g)} dx^1 \wedge \dots \wedge dx^n.$$

(b) Recall that \mathbf{n}_p denotes the outer normal vector field, i.e. the outward tangent vector at $p \in \partial M$ with $\mathbf{n}_p \perp T_p(\partial M)$. Show that the two volume forms of M and ∂M are related by

$$d(\partial M) = \mathbf{n}_p \lrcorner dM.$$

Problem 4[Classical Differential Operators]

(a) Setting as in Problem 3. For the Laplacian on functions prove in local coordinates

$$\Delta f = -\frac{1}{\sqrt{\det g}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(\sqrt{\det g} g^{ij} \frac{\partial f}{\partial x_j} \right).$$

- (b) Determine the local expression of $\operatorname{div} X$ for a vector field X.
- (c) For a smooth function f denote by ∇f the vector field defined by

$$g(\nabla f,.) = df.$$

Show Green's formulas: For two smooth functions f, g on M

$$\int_{M} \langle \Delta f, g \rangle + \langle \nabla f, \nabla g \rangle) dM = \int_{\partial M} \langle g \nabla f, \mathbf{n} \rangle d(\partial M)$$

and

$$\int_{M} \langle \Delta f, g \rangle - \langle f, \Delta \rangle) dM = \int_{\partial M} \langle g \nabla f - f \nabla g, \mathbf{n} \rangle d(\partial M).$$

Problem 5[Classical Stokes' Theorem]

We consider $M = \mathbb{R}^3$ with the standard euclidean structure.

(a) The **Rotation** of a vector field X is the vector field defined by

$$\operatorname{rot} X = \begin{pmatrix} \frac{\partial X_2}{\partial x_3} - \frac{\partial X_3}{\partial x_2} \\ -\frac{\partial X_1}{\partial x_3} + \frac{\partial X_3}{\partial x_1} \\ \frac{\partial X_1}{\partial x_2} - \frac{\partial X_2}{\partial x_1} \end{pmatrix}$$

Show the following identities

$$rot \circ \nabla = 0 \\
div \circ rot = 0$$

$$\nabla \circ \operatorname{div} \pm \operatorname{rot} \circ \operatorname{rot} = -\Delta$$

Determine the correct signs in the last equations.

(b) As a vector field X determines a 1-form on \mathbb{R}^3 via $X^* := \langle X, . \rangle$ it also defines a 2-form via $\alpha_X(Y,Z) := \langle X,Y \times Z \rangle$ using the cross- or vector product on \mathbb{R}^3 . Interpret ∇ , div, rot on functions and vector fields in the language of differential forms. To what identities do the relations above boil down?

(c) Let X be a vector field on \mathbb{R}^3 and $F \subset \mathbb{R}^3$ be an oriented smooth surface with boundary. Let $N: F \to \mathbb{R}^3$ denote the normal field to F such that an oriented basis of T_pF extended by N_p in the first position gives a standard oriented basis of \mathbb{R}^3 . Prove

$$\int_F \langle \mathrm{rot} X, N \rangle dF = \int_{\partial M} \langle X, d(\vec{\partial F}) \rangle$$

where $d(\vec{\partial}F)$ denotes the vector valued one form which in a local parametrization $\gamma: I \to F$ of ∂F is given by $\dot{\gamma(t)}dt$.