Problem Set 8

Differential Geometry II Summer 2020

Problem 1 [Exterior Covariant Derivative]
(a) Let $A \in \Omega^{1}(P, \underline{g})$ be a connection of the principal G-bundle $P \xrightarrow{\pi} M$. Recall that

$$
\left.\Omega^{k}(M ; \underline{\mathbf{g}})=\left\{\alpha \in \Omega^{k}(P, \underline{g}) \mid \forall X \in \underline{g}: \tilde{X}\right\lrcorner \alpha=0, \mu_{g}^{*} \alpha=A d_{g^{-1}} \alpha\right\}
$$

Show that

$$
D_{A} \alpha=d \alpha+[A, \alpha]
$$

defines a linear map $D_{A}: \Omega^{k}(M ; \underline{\mathbf{g}}) \rightarrow \Omega^{k+1}(M \underline{\mathbf{g}})$.
Note that for $A=\sum_{i=1}^{n} A_{i} d x^{i} A_{i} \in \underline{g}$ and $\alpha=\sum_{I} \alpha_{I} d x^{I}$ where $I=1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ is a multi-index, $d x^{I}=d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}$ and $\alpha_{I} \in \underline{g}$

$$
[A, \alpha]=\sum_{i=1}^{n} \sum_{I}\left[A_{i}, \alpha_{I}\right] d x^{i} \wedge d x^{I}
$$

(b) Show that $F_{A} \in \Omega^{2}(M ; \underline{\mathbf{g}})$, i.e. repeat the proof that $\left.\tilde{X}\right\lrcorner F_{A}=0$ and show $\mu_{g}^{*} F_{A}=A d_{g^{-1}} F_{A}$.

Problem 2 [Hopf Bundle]
This is a repetition of what was explained in class. Let

$$
S^{3}:=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \subset \mathbb{C}^{2}
$$

The Lie group $S^{1}=U(1)=S O(2)$ is acting on it (from the right) via $z \mapsto z g$.
(a) Construct a homeomorphism

$$
S^{3} / S^{1} \cong S^{2}
$$

such that the quotient map $S^{3} \xrightarrow{\pi} S^{2}$ is smooth.
(b) Show that $S^{3} \xrightarrow{\pi} S^{2}$ is a principal S^{1}-bundle.
(c) Verify that the orthogonal complements of the fibre tangents, $T_{p}^{h} S^{7}:=\left(T_{p} \pi^{-1}([p])\right)^{\perp}$, define a connection of the principal S^{1}-bundle.
(d) Describe the curvature of this connection (e.g. in local charts). Determine the Chern classes of the Hopf bundle, i.e. the Chern classes of the associated vector bundle w.r.t. the representation $S^{1} \rightarrow \mathbb{C}^{*}$.

Problem 3 [Tautological Line Bundle]
Once again: (a) Show that

$$
H:=\left\{\left(\left[z_{1}, z_{2}\right],\left(\lambda z_{1}, \lambda z_{2}\right)\right) \mid\left[z_{1}, z_{2}\right] \in \mathbb{C} P^{1}, \lambda \in \mathbb{C}\right\}
$$

is a smooth vector bundle. Describe a trivialization on

$$
U_{k}:=\left\{\left[z_{1}, z_{2}\right] \in \mathbb{C} P^{1} \mid z_{k} \neq 0\right\}
$$

for $k=1,2$ and the corresponding transition function. Can you explain, why this bundle must be non-trivial?
(b) A section $\sigma:\left.U \rightarrow H\right|_{U} \subset U \times \mathbb{C}^{2}$ can be considered as two complex funtions. We define a connection ∇ on the bundle by

$$
\nabla \sigma:=\operatorname{proj}_{H}^{\perp}(d \sigma)
$$

where $\operatorname{proj}_{H}^{\perp}$ denotes the orthogonal projection w.r.t. the standard scalar product. Show that this is a complex connection, i.e. satifies Leibniz' Rule even for complex valued smooth functions. Express it in the trivializations found in (a). Hint: Make use of the Hermitian product on \mathbb{C}^{2}.
(c) Compute the curvature of ∇. Explain that it is a 2 -form on $\mathbb{C} P^{1}$ (with purely imaginary values). (d) Consider the Hopf bundle and the representation $\rho: S^{1} \rightarrow \operatorname{Aut}(\mathbb{C})=\mathbb{C} \backslash\{0\}$ given by $\rho(g)=g$. Show that

$$
S^{3} \times_{\rho} \mathbb{C} \cong H
$$

Problem 4 [Invariant Polynomials and Chern Classes]
(a) Recall that we defined in class

$$
s_{\ell}(E, \nabla)=\operatorname{Trace}\left(\left(F^{\nabla}\right)^{\ell}\right)
$$

where the power means the ℓ-fold Wedge product of F^{∇} with itself. Express the Chern Classes in terms of s_{ℓ} for the first $c_{1}, c_{2}, c_{3}, \ldots$.
(b) Find a general formula or prove that each c_{k} is a polynomial of s_{ℓ}.

