Problem Set 9
 Differential Geometry II Summer 2020

Problem 1 [Exterior Derivatives]
(a) Let $\omega \in \Omega^{k}(M)$ be a k-form on the manifold $M, X_{1}, \ldots, X_{k+1}$ vector fields. Prove the following identity:

$$
\begin{aligned}
d \omega\left(X_{1}, \ldots, X_{k+1}\right) & =\sum_{j=1}^{k+1}(-1)^{j-1} X_{j}\left(\omega\left(X_{1}, \ldots, \widehat{X_{j}}, \ldots, X_{k+1}\right)\right) \\
& +\sum_{1 \leq i<j \leq k+1}\left[X_{i}, X_{j}\right]\left(\omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \widehat{X_{i}}, \ldots, \widehat{X_{j}}, \ldots, X_{k+1}\right)\right)
\end{aligned}
$$

(b) Let ∇ be a covariant derivative on a vector bundle $E \xrightarrow{\pi} M . \omega \in \Omega^{k}(M ; E)$ and X_{1}, \ldots, X_{k+1} vector fields on M. Guess a formula for the exterior covariant derivative $D \omega$ similar to (a) and prove it. Derive a formula for the curvature $F(v, w)$ in terms of ∇ using vector field extensions of the tangent vectors $v, w \in T_{p} M$.

Problem 2 [Cartan's (Magic) Formula]
(a) Let X, Y be vector fields on a manifold M (w.l.o.g. M is an open subset of \mathbb{R}^{n} since we are dealing with a local problem). Let $p \in M$ and $\Phi:(-\epsilon, \epsilon) \times V \rightarrow M$ be the flow map defined on a neighbourhood V of p and some $\epsilon>0$ (V and ϵ depending on V always exist!). Prove that

$$
\left.\frac{d}{d t}\right|_{t=0} d_{\Phi_{t}(p)} \Phi_{-t}\left(Y_{\Phi_{t} p}\right)=[X, Y]_{p}
$$

where $\Phi_{t}: V \rightarrow M$ is defined to by $\Phi_{t}(p)=\Phi(t, p)$. That expression is defined to be the Lie derivative $\mathcal{L}_{X} Y$ of Y along X.
(b) For a differential form $\omega \in \Omega^{k}(M)$ we define

$$
\left(\mathcal{L}_{X} \omega\right)_{p}:=\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{t}^{*} \omega\right)_{p}
$$

Show Cartan's magic formula

$$
\left.\left.\mathcal{L}_{X} \omega=X\right\lrcorner d \omega+d(X\lrcorner \omega\right)
$$

Problem 4 [SU(k)-Bundles]
(1) Let $E \xrightarrow{\pi} M$ be a Hermitian vector bundle of complex rank $k, P \rightarrow M$ its unitary frame bundle. Assume that there exists a reduction $Q \rightarrow P$ of P w.r.t. the inclusion homomorphisms $S U(k) \hookrightarrow U(k)$. What is the underlying differentiable structure on E. Hint: Recall that $S U(k)=$ $\{A \in U(k) \mid \operatorname{det} A=1\}$.
(2) Show that a reduction of the unitary frame bundle as in (i) exists if and only if $c_{1}(E)=0$.

Problem 5 [Arithmetic of Chern Classes]
Let $L_{k} \xrightarrow{\pi} M$ be two complex line bundles over a manifold M, i.e. complex vector bundles of complex rank 1. Show the folllowing formulas for Chern classes

$$
c_{1}\left(L_{1} \oplus L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right), \quad c_{2}\left(L_{1} \oplus L_{2}\right)=c_{1}\left(L_{1}\right) c_{1}\left(L_{2}\right), \quad c_{1}\left(L_{1} \otimes L_{2}\right)=C_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)
$$

Recall, that the product on $H_{D R}^{*}(M)$ is the induced by the wedge-product on $\Omega^{*}(M)$. You should use the Chern-Weil forms for the classes to prove the statements.

Problem 6s [Quaternionic Hopf Bundle]
Let

$$
S^{7}:=\left\{A \in M(2 ; \mathbb{C}) \mid \operatorname{Trace}\left(\bar{A}^{T} A\right)=2\right\} \subset M(2 ; \mathbb{C}) \cong \mathbb{C}^{4}
$$

The Lie group $S U(2):=\left\{g \in M(2 ; \mathbb{C}) \mid \bar{g}^{T} g=\mathbf{E}_{2}\right.$, $\left.\operatorname{det} g=1\right\}$ is acting on it (from the right) via $A \mapsto A g$.
(a) Construct a homeomorphism

$$
S^{7} / S U(2) \cong S^{4}
$$

such that the quotient map $S^{7} \xrightarrow{\pi} S^{4}$ is smooth.
(b) Show that $S^{7} \xrightarrow{\pi} S^{4}$ is a principal $S U(2)$-bundle.
(c) Verify that the orthogonal complements of the fibre tangents, $T_{p}^{h} S^{7}:=\left(T_{p} \pi^{-1}([p])\right)^{\perp}$, define a connection of the principal $S U(2)$-bundle.
(d) Compute the curvature of this connection. Determine the Chern classes of the Quaternionic Hopf bundle, i.e. the Chern classes of the associated complex vector bundle of rank 2 w.r.t. the representation $S U(2) \rightarrow G l(2 ; \mathbb{C})$.

