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The Space of Connections
The set of all connections

C(E ) = {∇|∇ connection of E}

is an affine space over

Ω1(M; End(E )) = Γ(T ∗M ⊗ End(E ))
= {σ : M → T ∗M ⊗ E ∗ ⊗ E | σ smooth section}.

Indeed: Let ∇0,∇ be connections on the vector bundle E π→ M.
Consider α := ∇−∇0 : Γ(E )→ Ω1(E ).

α(f σ) = ∇(f σ)−∇0(f σ) = f (∇σ−∇0σ)+(df )σ−(df )σ = f α(σ)

It follows: for σ ∈ Γ(U,E |U) with σ(p) = 0 we have α(σ)(p) = 0.
For v ∈ Ep let σ ∈ Γ(U,E |U) sich that σ(p) = v and define

αp(v) := α(σ)(p).
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Pull-Backs
Denote by (E ,∇) a vector bundle of rank k over a manifold M
equipped with a connection ∇. Let g : P → M be a smooth map
between manifolds (with boundary).

Definition 53: (1) The pull back, g∗E , of the bundle E is the
vector bundle

g∗E =
∐
p∈P

Eg(p)

where a trivialization Φ : π−1(U)→ U × Rk of E over U ⊂ M
induces a trivialization Φg : g−1(π−1(U))→ g−1(U)× Rk via

Φg (e) = (p, prRk Φ(e))

for e ∈ (g∗E )p.

(2) The pull back, ∇g , of the connection ∇ is given w.r.t. the
trivialization by the connection 1–form

Ag
Φ := g∗AΦ.
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Parallel Transport
∇g is well–defined, i.e. independent of the local trivialization Φ of
E .

Let γ : [a, b]→ M be a smooth curve connecting p = γ(a) and
q = γ(b).

Proposition 54: For any v ∈ Ep there is a unique section
σ : [a, b]→ γ∗E , with σ(a) = v which is parallel:

∇γσ ≡ 0.

σ is called horizontal lift of γ or just horizontal curve.
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Horizontal Spaces
Proposition 55: Let E π→ M be a smooth vector bundle over a
smooth manifold M. A connection on E is equivalently given in
one of the following ways:

(i) A covariant derivative ∇ on sections of E

(ii) A horizontal splitting TeE = T h
e E ⊕ Eπ(e) which depends

smoothly on e and satisfies for µλ : E → E , µλ(e) = λe

deµλ(T h
e E ) = T h

λeE .

Proof: (i)⇒ (ii): Given a covariant derivatve, we define for e ∈ Ep

T h
e E := {σ̇(0) | σ : I → E , 0 ∈ I, horizontal}

= {(deΦ)−1(X , v) | X ∈ TpU, v ∈ Rk ,AΦ,p(X )Φ(e)+v =0} ⊂ TeE

for a trivialization Φ : π−1(U)→ U × Rk and the connection
1–form AΦ of ∇ w.r.t. Φ.
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Horizontal Spaces
In trivialization mλ := Φ(µλ(Φ−1(p, x)) = (p, λx)

Then d(p,x)mλ(X , v) = (X , λv) and

λv + AΦ,p(X )Φ(µλ(e)) = λ(v + AΦ,p(X )Φ(e)).

and the claim follows.

Remark: The horizontal splitting also satisfies an addition
property. This follows from direct calculation or from the scaling
invariance just proved via an argument along Chris Wendl’s script,
Chapter 3.3.

(ii)⇒(i): ∇ defined via

(∇σ)p := prEp dpσ

on sections σ : U → E |U where prEp is the projection with respect
to the splitting is a covariant derivative whose horizontal splitting
is the given one.
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Curvature
Let ∇ be a covariant derivative of a vector bundle E π→ M.

The
associated covariant exterior derivatives are linear maps
Dk : Ωk(M,E )→ Ωk+1(M,E ) where Ωk(M,E ) = Γ(Λk(M)⊗ E )
such that D0 = ∇

Dk+`(α ∧ σ) = dα ∧ σ + (−1)kα ∧ D`σ

for any α ∈ Ωk(M) and σ ∈ Ω`(M,E ).
The index for Dk will be omitted further on.

Proposition 56: There is an element F = F∇ ∈ Ω2(End(E ))
such that for any σ ∈ Ωk(M,E )

D2σ = F∇ ∧ σ.

In particular, we have

F∇(X ,Y )σ = (∇X∇Y −∇Y∇X −∇[X ,Y ])σ.

for any σ ∈ Γ(E ) and vector fields X ,Y .
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Curvature
F∇ is the curvature of ∇.
Proposition 57: (1) Let A ∈ Ω1(U; M(n;R)) be the connection
1-form w.r.t. a trivialization. Then for the curvature we have

FA = dA + A ∧ A ∈ Ω2(U; M(n;R))

w.r.t. the trivialization. Hereby with A = (Ai
j)inΩ1(U))

(A ∧ A)i
j =

k∑
`=1

Ai
` ∧ A`j .

(2) Let ∇0,∇ be two connections, ∇ = ∇0 + α, for
α ∈ Ω1(M; End(E )). Then

F∇ = F∇0 + D0α + α ∧ α.

(3) Let p ∈ M, e ∈ Ep, X ,Y be two vector fields on M in a
neighbourhood of p. Let X̃ , Ỹ be their horizontal lifts to E . Then

F∇(X ,Y )e = [X̃ , Ỹ ]p.
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Curvature
F∇ is the curvature of ∇.
Proposition 57: (1) Let A ∈ Ω1(U; M(n;R)) be the connection
1-form w.r.t. a trivialization. Then for the curvature we have

FA = dA + A ∧ A ∈ Ω2(U; M(n;R))

w.r.t. the trivialization. Hereby with A = (Ai
j)inΩ1(U))

(A ∧ A)i
j =

k∑
`=1

Ai
` ∧ A`j .

(2) Let ∇0,∇ be two connections, ∇ = ∇0 + α, for
α ∈ Ω1(M; End(E )). Then

F∇ = F∇0 + D0α + α ∧ α.

(3) Let p ∈ M, e ∈ Ep, X ,Y be two vector fields on M in a
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Curvature
Note: A ∧ A 6= 0 in general!

Proof:
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Curvature



2nd Bianchi Identity
Proposition 58: With the notation from above we have

DF∇ = 0.

Proof:



Euclidean Vector Bundles
Definition 59: Let E π→ M be a smooth vector bundle. A
euclidean structure on E is a smooth family {g}p∈M of scalar
products on the fibres Ep.

A metric connection on a euclidean vector bundle (E , g) is a
covariant derivative ∇ which satisfies in addition

d(g(σ, τ)) = g(∇σ, τ) + g(σ,∇τ)

for any pair of (local) sections σ, τ of E .

Remark: (1) The metric condition is much harder to define in
terms of the horizontal vector spaces of TE .
(2) The parallel transport of a metric connection defines isometries
between the fibres.
(3) The curvature F of a metric connection is skew-symmetric:

g(F (e), f ) = −g(e,F (f )).
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(3) The curvature F of a metric connection is skew-symmetric:

g(F (e), f ) = −g(e,F (f )).
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Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:

Φ : π−1(U)→ U × Rk

such that
Φ|Ep : (Ep, gp) −→ (Rk , 〈., .〉

is an isometry for all p ∈ U. Φ will be called euclidean
trivialization.

In particular, the transition functions are smooth maps

g : U ∩ V → O(k)

to the set of orthogonal matrices.
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Euclidean Vector Bundles
An oriented vector bundle is a choice of orientations of all Ep such
that the trivializations Φ can be chosen, so that

Φ|Ep : Ep → Rk

is orientation preserving w r.t. the standard orientation of Rk .

For an oriented euclidean vector bundle and oriented, euclidean
trivializatons, the transition functions are smooth maps

g : U ∩ V → SO(k)

to the set of orthogonal matrices with determinant equal to 1.

Vice versa: A family of transition funtions

gij : Ui ∩ Uj → O(k) or SO(k)

for an open covering {Ui}i∈I satsifying the cocycle condition
defines an (oriented) euclidean vector bundle over M up to
(orientation) and metric preserving ismomorphisms (short:
isometries).
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Euclidean Vector Bundles
The connection 1-form and the curvatire of a metric connection
satisfy

Ai
j = −Aj

i and F i
j = −F j

i

w.r.t. a euclidean trivialization, i.e.

A ∈ Ω1(U; o(n)), F ∈ Ω2(U; o(n))

where o(n) ⊂ M(k;R) denotes the set of skew–symmetric
matrices.

Note: For A,B ∈ Ω1(U; o(n)) in general A ∧ B 6∈ o(n)
but A ∧ A ∈ Ω2(U; o(n)).

One defines for A =
∑

i Aidx i and B =
∑

i Bidx i

[A,B] = [A ∧ B] =
∑
i ,j

[Ai ,Bj ]dx i ∧ dx j

with [X ,Y ] = XY − YX . Then A ∧ A = 1
2 [A,A].
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Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector
bundle E π→ M together with a smooth family {Jp}p∈M of complex
structures Jp ∈ EndR(Ep), J2

p = −idEp .

In particular, the real rank is even and the complex rank is defined
to be

k = rkCE = rkRE
2 .

There exist local trivializations Φ : π−1(U)→ U × Ck such that

Φ|Ep : (Ep, Jp)→ Ck

is complex linear for all p ∈ U.

The transition functions are smooth maps

g : U ∩ V → Gl(k;C).

Vice versa: A family of such transition functions satisfying the
cocycle condition defines a complex vector bundle up to
isomorphism.
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