Differential Geometry II
 Curvature

Klaus Mohnke

May 26, 2020

The Space of Connections
The set of all connections

$$
E \rightarrow M \text { vector barde }
$$

$$
E_{p}=\pi^{-1}(p)
$$

$$
\mathcal{C}(E)=\{\nabla \mid \nabla \text { connection of } E\}
$$

is an affine space over

$$
\begin{aligned}
& \alpha \in \Omega^{1}(M ; E n d(E))=\Gamma\left(T^{*} M \otimes E n d(E)\right) \\
&=\left\{\sigma: M \rightarrow T^{*} M \otimes \underline{\left.E^{*} \otimes E \mid \sigma \text { smooth section }\right\} .}\right. \\
& \text { if } X \in T_{p} M \quad \alpha_{p}(X) \in E_{n d}\left(E_{p}\right)
\end{aligned}
$$

The Space of Connections

The set of all connections

$$
\mathcal{C}(E)=\{\nabla \mid \nabla \text { connection of } E\}
$$

is an affine space over

$$
\begin{aligned}
\Omega^{1}(M ; E n d(E)) & =\Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right) \\
& =\left\{\sigma: M \rightarrow T^{*} M \otimes E^{*} \otimes E \mid \sigma \text { smooth section }\right\}
\end{aligned}
$$

Indeed: Let ∇^{0}, ∇ be connections on the vector bundle $E \xrightarrow{\pi} M$. Consider $\alpha:=\nabla-\nabla^{0}: \Gamma(E) \rightarrow \Omega^{1}(E)$.

The Space of Connections

The set of all connections

$$
\mathcal{C}(E)=\{\nabla \mid \nabla \text { connection of } E\}
$$

is an affine space over

$$
\begin{aligned}
\Omega^{1}(M ; E n d(E)) & =\Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right) \\
& =\left\{\sigma: M \rightarrow T^{*} M \otimes E^{*} \otimes E \mid \sigma \text { smooth section }\right\}
\end{aligned}
$$

Indeed: Let ∇^{0}, ∇ be connections on the vector bundle $E \xrightarrow{\pi} M$.
Consider $\alpha:=\nabla-\nabla^{0}: \Gamma(E) \rightarrow \Omega^{1}(E) . \quad \sigma: দ \rightarrow \frac{E}{4}$, seckon, shuoflh
$\overline{\alpha(f \sigma)}=\nabla(f \sigma)-\nabla^{0}(f \sigma)=f\left(\nabla \sigma-\nabla^{0} \sigma\right)+(d f) \sigma-(d f) \sigma=\overline{f \alpha(\sigma)}$

The Space of Connections

The set of all connections

$$
\mathcal{C}(E)=\{\nabla \mid \nabla \text { connection of } E\}
$$

is an affine space over

$$
\begin{aligned}
\Omega^{1}(M ; E n d(E)) & =\Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right) \\
& =\left\{\sigma: M \rightarrow T^{*} M \otimes E^{*} \otimes E \mid \sigma \text { smooth section }\right\}
\end{aligned}
$$

Indeed: Let ∇^{0}, ∇ be connections on the vector bundle $E \xrightarrow{\pi} M$. Consider $\alpha:=\nabla-\nabla^{0}: \Gamma(E) \rightarrow \Omega^{1}(E)$.
$\alpha(f \sigma)=\nabla(f \sigma)-\nabla^{0}(f \sigma)=f\left(\nabla \sigma-\nabla^{0} \sigma\right)+(d f) \sigma-(d f) \sigma=f \alpha(\sigma) \Leftarrow$
It follows: for $\sigma \in \Gamma\left(U,\left.E\right|_{U}\right)$ with $\sigma(p)=0$ we have $\alpha(\sigma)(p)=0$.

The Space of Connections

The set of all connections

$$
\mathcal{C}(E)=\{\nabla \mid \nabla \text { connection of } E\}
$$

is an affine space over

$$
\begin{aligned}
\Omega^{1}(M ; E n d(E)) & =\Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right) \\
& =\left\{\sigma: M \rightarrow T^{*} M \otimes E^{*} \otimes E \mid \sigma \text { smooth section }\right\}
\end{aligned}
$$

Indeed: Let ∇^{0}, ∇ be connections on the vector bundle $E \xrightarrow{\pi} M$. Consider $\alpha:=\nabla-\nabla^{0}: \Gamma(E) \rightarrow \Omega^{1}(E)$.
$\alpha(f \sigma)=\nabla(f \sigma)-\nabla^{0}(f \sigma)=f\left(\nabla \sigma-\nabla^{0} \sigma\right)+(d f) \sigma-(d f) \sigma=f \alpha(\sigma)$
It follows: for $\sigma \in \Gamma\left(U,\left.E\right|_{U}\right)$ with $\sigma(p)=0$ we have $\alpha(\sigma)(p)=0$.
For $v \in E_{p}$ let $\sigma \in \Gamma\left(U,\left.E\right|_{U}\right)$ sich that $\sigma(p)=v$ and define

$$
\alpha_{p}(v):=\alpha(\sigma)(p)
$$

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇. Let $g: P \rightarrow M$ be a smooth map between manifolds (with boundary).

Pull-Backs
Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇. Let $g: P \rightarrow M$ be a smooth map between manifolds (with boundary).

Definition 53: (1) The pull back, $g^{*} E$, of the bundle E is the vector bundle

$$
g^{*} E=\coprod_{p \in P} E_{g(p)} \xrightarrow{\pi} P
$$

where a trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ of E over $U \subset M$ induces a trivialization $\Phi_{g}: g^{-1}\left(\pi^{-1}(U)\right) \rightarrow \overline{g^{-1}(U)} \times \mathbb{R}^{k}$ via

$$
\Phi_{g}(e)=\left(p, \operatorname{pr}_{\mathbb{R}^{k}} \Phi(e)\right)<\rho \text { pen }
$$

for $e \in\left(g^{*} E\right)_{p}=E_{g(p)} \quad\left(p_{1} \neq p_{2} \quad \& \quad g\left(p_{1}\right)=g\left(p_{2}\right)\right.$

$$
\left(g^{*}\right)_{p_{1}} \neq\left(g^{*} E\right)_{p_{2}}
$$

$\left\langle u_{i}\right\}_{i}$ covering of $1 \Rightarrow\left\langle g \simeq\left(u_{i}\right)\right\}_{i}$ coming of T

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇. Let $g: P \rightarrow M$ be a smooth map between manifolds (with boundary).

Definition 53: (1) The pull back, $g^{*} E$, of the bundle E is the vector bundle

$$
g^{*} E=\coprod_{p \in P} E_{g(p)}
$$

where a trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ of E over $U \subset M$ induces a trivialization $\Phi_{g}: g^{-1}\left(\pi^{-1}(U)\right) \rightarrow g^{-1}(U) \times \mathbb{R}^{k}$ via

$$
\Phi_{g}(e)=\left(p, \operatorname{pr}_{\mathbb{R}^{k}} \Phi(e)\right)
$$

for $e \in\left(g^{*} E\right)_{p}$.
(2) The pull back, ∇^{g}, of the connection ∇ is given w.r.t. the trivialization by the connection 1-form

$$
A_{\Phi}^{g}:=g^{*} \underline{A_{\Phi}} \quad . . \text { pule.bad of 1-foms }
$$

Parallel Transport
∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.

11 for tho trivializtions \$,4

$$
\begin{aligned}
& 4: \Phi^{-1}(x, r)=(x, \varphi(x) r) \\
& \varphi: u \cap r \rightarrow \text { ge }(k, R) \text { cransticfundion }
\end{aligned}
$$

$\rightarrow \quad \varphi \cdot g: g^{-1} \ln 7 \cap g^{-1}(v) \rightarrow f(l, R)$
Mrmin? fotus for wiv. of $\mathrm{g}^{n} E$

$$
A_{4}^{g}=(\varphi \circ g)^{-1} A_{\Phi}^{g}(\varphi \cdot g)+(\varphi \circ g)^{-1} d(\varphi \cdot g)
$$

Parallel Transport

∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.

Let $\gamma:[a, b] \rightarrow M$ be a smooth curve connecting $p=\gamma(a)$ and $q=\gamma(b)$.

Parallel Transport

∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.

Let $\gamma:[a, b] \rightarrow M$ be a smooth curve connecting $p=\gamma(a)$ and $q=\gamma(b)$.

$$
\pi^{-1}(p)
$$

Proposition 54: For any $v \in E_{p}^{\prime \prime}$ there is a unique section $\sigma:[a, b] \rightarrow \gamma^{*} E$, with $\sigma(a)=v$ which is parallel:

$$
\nabla^{\gamma} \sigma \equiv 0
$$

Parallel Transport

∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.
plicpurise

Let $\gamma:[a, b] \rightarrow M$ be a smooth curve connecting $p=\gamma(a)$ and $q=\gamma(b)$.

Proposition 54: For any $v \in E_{p}$ there is a unique section $\sigma:[a, b] \rightarrow \gamma^{*} E$, with $\sigma(a)=v$ which is parallel:

$$
\nabla^{\gamma} \sigma \equiv 0
$$

σ is called horizontal lift of γ pr just horizontal curve.

Parallel Transport
Let $\left(h_{i}\right)_{i \in I}$ poen cenring of h.
\Rightarrow Then $\left(r^{-1}\left(u_{i}\right)\right)$ ifI open carning of $[a, b]$ (a, b) compact $\Rightarrow \exists$ fint opr subcovery $\left.i_{\gamma} \mathcal{}\left(u_{k}\right)\right\}_{k=1 \text {. }}^{N}$于 $a=t_{0}<t_{1}<\ldots=t_{N}=b$ s.t. $\quad\left(t_{k}, t_{t+1}\right)<\gamma^{-1}\left(u_{k}\right)$

On $\left.\quad\left[t_{k}, t_{k+1}\right] \quad S_{h}:=\Phi_{k} \circ \sigma /\left(t_{k}, t_{k+1}\right]:\left[t_{k}, t_{k+1}\right] \rightarrow\right)^{k}$ $\Phi_{k}{ }^{\circ} \nabla_{\frac{\partial}{\partial t}}^{\gamma} \sigma:\left(t_{h}, t_{h-1}\right) \rightarrow p^{a} \quad \Phi_{k} \cdot \nabla_{\partial \partial}^{x} \sigma=\frac{d s_{k}(t)}{d t}+A_{\phi_{k}}^{\gamma}(\dot{x}(t)) s_{k}(t)=0$ in a $\lim \omega$ ODE: ghetal slentions fer any in itial value.
 $s_{k}^{\prime}\left(t_{k}\right)=s_{k-1}\left(t_{k}\right)$

Horizontal Spaces

Proposition 55: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a smooth manifold M. A connection on E is equivalently given in one of the following ways:

Horizontal Spaces

Proposition 55: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a smooth manifold M. A connection on E is equivalently given in one of the following ways:
(i) A covariant derivative ∇ on sections of E

Horizontal Spaces

Proposition 55: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a smooth manifold M. A connection on E is equivalently given in one of the following ways:
(i) A covariant derivative ∇ on sections of $E \geqslant T_{e} E_{\text {The) }}$
(ii) A horizontal splitting $T_{e} E=T_{e}^{h} E \oplus \widetilde{E_{\pi(e)}}$ which depends smoothly on e and satisfies for $\mu_{\lambda}: E \rightarrow E, \mu_{\lambda}(e)=\lambda e$

$$
d_{e} \mu_{\lambda}\left(T_{e}^{h} E\right)=T_{\lambda e}^{h} E
$$

Proof: (i) \Rightarrow (ii): Given a covariant derivative, we define for $e \in E_{p}$

$$
\begin{aligned}
& \sigma(0)=e \\
& T_{e}^{h} E:=\{\dot{\sigma}(0) \mid \sigma: I \rightarrow E, 0 \in I \text {, horizontal }\} \in M(k, \mathbb{R}) \\
& =\left\{\left(d_{e} \Phi\right)^{-1}(\underline{X, v}) \mid X \in T_{p} \widetilde{\left.U, v \in \mathbb{R}^{k}, \widetilde{A_{\Phi, p}(X)} \Phi(e)+v=0\right\} \subset T_{e} E .}\right. \\
& U \text { goo, } \pi(e) \in U \\
& \text { for a trivialization } \Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k} \text { and the connection } \\
& 1 \text {-form } A_{\Phi} \text { of } \nabla \text { w.r.t. } \Phi \text {. }
\end{aligned}
$$

Horizontal Spaces

Proposition 55: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a smooth manifold M. A connection on E is equivalently given in one of the following ways:
(i) A covariant derivative ∇ on sections of E
(ii) A horizontal splitting $T_{e} E=T_{e}^{h} E \oplus E_{\pi(e)}$ which depends smoothly on e and satisfies for $\mu_{\lambda}: E \rightarrow E, \mu_{\lambda}(e)=\lambda e$

$$
d_{e} \mu_{\lambda}\left(T_{e}^{h} E\right)=T_{\lambda e}^{h} E
$$

Proof: $(\mathrm{i}) \Rightarrow$ (ii): Given a covariant derivatve, we define for $e \in E_{p}$

$$
\begin{aligned}
T_{e}^{h} E & :=\{\dot{\sigma}(0) \mid \sigma: I \rightarrow E, 0 \in I, \text { horizontal }\} \\
& =\left\{\left(d_{e} \Phi\right)^{-1}(X, v) \mid X \in T_{p} U, v \in \mathbb{R}^{k}, A_{\Phi, p}(X) \Phi(e)+v=0\right\} \subset T_{e} E
\end{aligned}
$$

for a trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ and the connection 1-form A_{Φ} of ∇ w.r.t. Φ.

Horizontal Spaces

In trivialization $m_{\lambda}:=\Phi\left(\mu_{\lambda}\left(\Phi^{-1}(p, x)\right)=(p, \lambda x)\right.$

Horizontal Spaces

In trivialization $m_{\lambda}:=\Phi\left(\mu_{\lambda}\left(\Phi^{-1}(p, x)\right)=(p, \lambda x)\right.$
Then $d_{(p, x)} m_{\lambda}(X, v)=(X, \lambda v)$ and

$$
\lambda v+\underbrace{A_{\Phi, p}(X) \Phi\left(\mu_{\lambda}(e)\right)=\lambda(\underbrace{v+A_{\Phi, p}(X) \Phi(e)}) ~ . ~}
$$

Horizontal Spaces

In trivialization $m_{\lambda}:=\Phi\left(\mu_{\lambda}\left(\Phi^{-1}(p, x)\right)=(p, \lambda x)\right.$
Then $d_{(p, x)} m_{\lambda}(X, v)=(X, \lambda v)$ and

$$
\lambda v+A_{\Phi, p}(X) \Phi\left(\mu_{\lambda}(e)\right)=\lambda\left(v+A_{\Phi, p}(X) \Phi(e)\right)
$$

and the claim follows.

Horizontal Spaces

In trivialization $m_{\lambda}:=\Phi\left(\mu_{\lambda}\left(\Phi^{-1}(p, x)\right)=(p, \lambda x)\right.$
Then $d_{(p, x)} m_{\lambda}(X, v)=(X, \lambda v)$ and

$$
\lambda v+A_{\Phi, p}(X) \Phi\left(\mu_{\lambda}(e)\right)=\lambda\left(v+A_{\Phi, p}(X) \Phi(e)\right)
$$

and the claim follows.
Remark: The horizontal splitting also satisfies an addition property. This follows from direct calculation or from the scaling invariance just proved via an argument along Chris WendI's script, Chapter 3.3. : $P_{e}: T_{e} E \rightarrow E_{e}$ projection map

$$
\begin{aligned}
& P_{e} \text { dupuch sunothly on e \& induced by splitting. } \\
& P_{e} \mid E_{e}=i d_{E_{e}} \\
& \left.P_{\lambda e}{ }^{\circ} d_{e}\right|_{\lambda}=\mu_{\lambda} \text { " } P_{e} "
\end{aligned}
$$

Horizontal Spaces

In trivialization $m_{\lambda}:=\Phi\left(\mu_{\lambda}\left(\Phi^{-1}(p, x)\right)=(p, \lambda x)\right.$
Then $d_{(p, x)} m_{\lambda}(X, v)=(X, \lambda v)$ and

$$
\lambda v+A_{\Phi, p}(X) \Phi\left(\mu_{\lambda}(e)\right)=\lambda\left(v+A_{\Phi, p}(X) \Phi(e)\right)
$$

and the claim follows.
Remark: The horizontal splitting also satisfies an addition property. This follows from direct calculation or from the scaling invariance just proved via an argument along Chris Wendl's script, Chapter 3.3.
(ii) \Rightarrow (i): ∇ defined via

$$
\begin{aligned}
& 1, P_{\sigma(p)} \\
& (\nabla \sigma)_{p}:=\widetilde{\sim}_{\mathrm{pr}_{E_{p}}} d_{p} \\
& d_{\mu} \sigma: T_{p} M \rightarrow T_{\sigma(p)}
\end{aligned}
$$

on sections $\sigma:\left.U \rightarrow E\right|_{U}$ where $\mathrm{pr}_{E_{p}}$ is the projection with respect to the splitting is a covariant derivative whose horizontal splitting is the given one.

Curvature

Let ∇ be a covariant derivative of a vector bundle $E \xrightarrow{\pi} M$.

Curvature

Let ∇ be a covariant derivative of a vector bundle $E \xrightarrow{\pi} M$. The associated covariant exterior derivatives are linear maps
$D_{k}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ where $\Omega^{k}(M, E)=\Gamma\left(\Lambda^{k}(M) \otimes E\right)$ such that

$$
\begin{aligned}
& \alpha \not x_{1}, \ldots x_{k} \text { ad. furs on } h<m \\
\Rightarrow & \alpha\left(x_{1}, \ldots, x_{k}\right): h \rightarrow \text { gen. } \\
& \text { silica. }
\end{aligned}
$$

Curvature
 $$
\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} h \otimes E\right)=\Omega^{\prime}(M, E)
$$

Let ∇ be a covariant derivative of a vector bundle $E \xrightarrow{\pi} M$. The associated covariant exterior derivatives are linear maps $D_{k}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ where $\Omega^{k}(M, E)=\Gamma\left(\Lambda^{k}(M) \otimes E\right)$ such that $D_{0}=\nabla$

$$
D_{k+\ell}(\alpha \wedge \sigma)=d \alpha \wedge \sigma+(-1)^{k} \alpha \wedge D_{\ell} \sigma
$$

for any $\alpha \in \Omega^{k}(M)$ and $\sigma \in \Omega^{\ell}(M, E)$.

Curvature

Let ∇ be a covariant derivative of a vector bundle $E \xrightarrow{\pi} M$. The associated covariant exterior derivatives are linear maps
$D_{k}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ where $\Omega^{k}(M, E)=\Gamma\left(\Lambda^{k}(M) \otimes E\right)$ such that $D_{0}=\nabla$

$$
D_{k+\ell}(\alpha \wedge \sigma)=d \alpha \wedge \sigma+(-1)^{k} \alpha \wedge D_{\ell} \sigma
$$

for any $\alpha \in \Omega^{k}(M)$ and $\sigma \in \Omega^{\ell}(M, E)$.
The index for D_{k} will be omitted further on.

Curvature

Let ∇ be a covariant derivative of a vector bundle $E \xrightarrow{\pi} M$. The associated covariant exterior derivatives are linear maps
$D_{k}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ where $\Omega^{k}(M, E)=\Gamma\left(\Lambda^{k}(M) \otimes E\right)$ such that $D_{0}=\nabla$

$$
D_{k+\ell}(\alpha \wedge \sigma)=d \alpha \wedge \sigma+(-1)^{k} \alpha \wedge D_{\ell} \sigma
$$

for any $\alpha \in \Omega^{k}(M)$ and $\sigma \in \Omega^{\ell}(M, E)$.
The index for D_{k} will be omitted further on.
Proposition 56: There is an element $F=F^{\nabla} \in \Omega^{2}\left(\frac{\text { (End }}{}(E)\right)$ such that for any $\sigma \in \Omega^{k}(M, E)$

$$
\begin{aligned}
& D(D \sigma)=: D^{2} \sigma=\underline{F}^{\nabla} \wedge \sigma . \quad \underbrace{E \operatorname{End}\left(E_{p}\right)} E_{p}^{E_{p}} \\
& \left(F^{\nabla} 1 \sigma\right)\left(X_{2,1}, \ldots, X_{k+2}\right)=\frac{1}{p} \frac{1}{p!k!} \underset{\sigma \in S_{k+2}}{ } F_{p}^{\nabla}\left(X_{\sigma(1)}, Y_{\sigma(2)}\right)\left(\sigma\left(X_{\sigma(3), \ldots}\right)\right]
\end{aligned}
$$

Curvature

Let ∇ be a covariant derivative of a vector bundle $E \xrightarrow{\pi} M$. The associated covariant exterior derivatives are linear maps
$D_{k}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ where $\Omega^{k}(M, E)=\Gamma\left(\Lambda^{k}(M) \otimes E\right)$ such that $D_{0}=\nabla$

$$
D_{k+\ell}(\alpha \wedge \sigma)=d \alpha \wedge \sigma+(-1)^{k} \alpha \wedge D_{\ell} \sigma
$$

for any $\alpha \in \Omega^{k}(M)$ and $\sigma \in \Omega^{\ell}(M, E)$.
The index for D_{k} will be omitted further on.
Proposition 56: There is an element $F=F^{\nabla} \in \Omega^{2}(E n d(E))$
such that for any $\sigma \in \Omega^{k}(M, E)$

$$
D^{2} \sigma=F^{\nabla} \wedge \sigma
$$

In particular, we have

$$
\begin{aligned}
& \frac{p_{\text {of }}:}{D^{2} \sigma(x, r)=(\rightarrow X)} \\
& D^{2}(f \sigma)=f \cdot D^{2} \sigma \quad \forall f \in C \\
& \Rightarrow D_{p}^{2} \cdot(x, y): E_{p} \rightarrow-E_{p} \text { wele-dif. }
\end{aligned}
$$

$$
\text { (*) } \quad F^{\nabla}(X, Y) \sigma=\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) \sigma .
$$

ko use
Chísniz - Rule
for any $\sigma \in \Gamma(E)$ and vector fields X, Y. on Y

Curvature
 $$
o k E=k
$$

F^{∇} is the curvature of ∇.
Proposition 57: (1) Let $A \in \Omega^{1}\left(U ; M\left(\not x_{i} \mathbb{R}\right)\right)$ be the connection 1-form w.r.t. a trivialization. Then for the curvature we have

$$
F_{A}=d A+A \wedge A \in \Omega^{2}(U ; M(k ; \mathbb{R}))
$$

w.r.t. the trivialization. Hereby with $\left.A=\left(A_{j}^{i}\right) \Omega^{1}(U)\right)$

$$
(A \wedge A)_{j}^{i}=\sum_{\ell=1}^{k} A_{\ell}^{i} \wedge A_{j}^{\ell}
$$

Curvature

F^{∇} is the curvature of ∇.
Proposition 57: (1) Let $A \in \Omega^{1}(U ; M(n ; \mathbb{R}))$ be the connection 1 -form w.r.t. a trivialization. Then for the curvature we have

$$
F_{A}=d A+A \wedge A \in \Omega^{2}(U ; M(n ; \mathbb{R}))
$$

w.r.t. the trivialization. Hereby with $\left.A=\left(A_{j}^{i}\right) i n \Omega^{1}(U)\right)$

$$
(A \wedge A)_{j}^{i}=\sum_{\ell=1}^{k} A_{\ell}^{i} \wedge A_{j}^{\ell}
$$

(2) Let ∇^{0}, ∇ be two connections, $\nabla=\nabla^{0}+\alpha$, for $\alpha \in \Omega^{1}(M ; E n d(E))$. Then $\quad D^{0} \because \Omega^{1}\left(M, \varepsilon_{n} d(E)\right)-1 \Omega^{2}\left(H, \varepsilon_{d}(E)\right.$

$$
F^{\nabla}=F^{\nabla^{0}}+D^{0} \alpha+\alpha \wedge \alpha . \quad \text { in aced by } \nabla^{\circ}
$$

∇° camels cu $E \sim$, comitia on $E^{* *} \otimes E$

$$
\leadsto D^{0} \text { on } \Omega^{k}\left(M, \varepsilon_{n d}(F)\right)=\operatorname{sud}(E)
$$

Curvature

F^{∇} is the curvature of ∇.
Proposition 57: (1) Let $A \in \Omega^{1}(U ; M(n ; \mathbb{R}))$ be the connection 1 -form w.r.t. a trivialization. Then for the curvature we have

$$
F_{A}=d A+A \wedge A \in \Omega^{2}(U ; M(n ; \mathbb{R}))
$$

w.r.t. the trivialization. Hereby with $\left.A=\left(A_{j}^{i}\right) i n \Omega^{1}(U)\right)$

$$
(A \wedge A)_{j}^{i}=\sum_{\ell=1}^{k} A_{\ell}^{i} \wedge A_{j}^{\ell}
$$

(2) Let ∇^{0}, ∇ be two connections, $\nabla=\nabla^{0}+\alpha$, for $\alpha \in \Omega^{1}(M ; E n d(E))$. Then

$$
F^{\nabla}=F^{\nabla^{0}}+D^{0} \alpha+\alpha \wedge \alpha .
$$

(3) Let $p \in M, e \in E_{p}, X, Y$ be two vector fields on M in a neighbourhood of p. Let \tilde{X}, \tilde{Y} be their horizontal lifts to E. Then $\tilde{X}_{e}=\left(d \pi / T_{e}^{k} E\right)^{-\perp}\left(X_{p}\right) \quad F^{\nabla}(X, Y) e=[\tilde{X}, \tilde{Y}]_{p e}$

Curvature

Note: $A \wedge A \neq 0$ in general!

Curvature

Note: $A \wedge A \neq 0$ in general!
Proof:

Curvature

2nd Bianchi Identity

Proposition 58: With the notation from above we have

$$
D F^{\nabla}=0 .
$$

Proof:

Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on E is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres E_{p}.

Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on E is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres E_{p}.

A metric connection on a euclidean vector bundle (E, g) is a covariant derivative ∇ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

for any pair of (local) sections σ, τ of E.

Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on E is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres E_{p}.

A metric connection on a euclidean vector bundle (E, g) is a covariant derivative ∇ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

for any pair of (local) sections σ, τ of E.
Remark: (1) The metric condition is much harder to define in terms of the horizontal vector spaces of TE.

Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on E is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres E_{p}.

A metric connection on a euclidean vector bundle (E, g) is a covariant derivative ∇ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

for any pair of (local) sections σ, τ of E.
Remark: (1) The metric condition is much harder to define in terms of the horizontal vector spaces of $T E$.
(2) The parallel transport of a metric connection defines isometries between the fibres.

Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on E is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres E_{p}.

A metric connection on a euclidean vector bundle (E, g) is a covariant derivative ∇ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

for any pair of (local) sections σ, τ of E.
Remark: (1) The metric condition is much harder to define in terms of the horizontal vector spaces of TE.
(2) The parallel transport of a metric connection defines isometries between the fibres.
(3) The curvature F of a metric connection is skew-symmetric:

$$
g(F(e), f)=-g(e, F(f))
$$

Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, g_{p}\right) \longrightarrow\left(\mathbb{R}^{k},\langle., .\rangle\right.
$$

is an isometry for all $p \in U$. Φ will be called euclidean trivialization.

Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, g_{p}\right) \longrightarrow\left(\mathbb{R}^{k},\langle., .\rangle\right.
$$

is an isometry for all $p \in U$. Φ will be called euclidean trivialization.

In particular, the transition functions are smooth maps

$$
g: U \cap V \rightarrow O(k)
$$

to the set of orthogonal matrices.

Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all E_{p} such that the trivializations Φ can be chosen, so that

$$
\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}
$$

is orientation preserving $w r$ r.t. the standard orientation of \mathbb{R}^{k}.

Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all E_{p} such that the trivializations Φ can be chosen, so that

$$
\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}
$$

is orientation preserving $w r$ r.t. the standard orientation of \mathbb{R}^{k}.
For an oriented euclidean vector bundle and oriented, euclidean trivializatons, the transition functions are smooth maps

$$
g: U \cap V \rightarrow S O(k)
$$

to the set of orthogonal matrices with determinant equal to 1 .

Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all E_{p} such that the trivializations Φ can be chosen, so that

$$
\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}
$$

is orientation preserving w r.t. the standard orientation of \mathbb{R}^{k}.
For an oriented euclidean vector bundle and oriented, euclidean trivializatons, the transition functions are smooth maps

$$
g: U \cap V \rightarrow S O(k)
$$

to the set of orthogonal matrices with determinant equal to 1 .
Vice versa: A family of transition funtions

$$
g_{i j}: U_{i} \cap U_{j} \rightarrow O(k) \text { or } S O(k)
$$

for an open covering $\left\{U_{i}\right\}_{i \in I}$ satsifying the cocycle condition defines an (oriented) euclidean vector bundle over M up to (orientation) and metric preserving ismomorphisms (short: isometries).

Euclidean Vector Bundles

The connection 1-form and the curvatire of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

Euclidean Vector Bundles

The connection 1-form and the curvatire of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Euclidean Vector Bundles

The connection 1-form and the curvatire of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(n)$

Euclidean Vector Bundles

The connection 1-form and the curvatire of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(n)$ but $A \wedge A \in \Omega^{2}(U ; \underline{o}(n))$.

Euclidean Vector Bundles

The connection 1-form and the curvatire of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(n)$ but $A \wedge A \in \Omega^{2}(U ; \underline{o}(n))$.

One defines for $A=\sum_{i} A_{i} d x^{i}$ and $B=\sum_{i} B_{i} d x^{i}$

$$
[A, B]=[A \wedge B]=\sum_{i, j}\left[A_{i}, B_{j}\right] d x^{i} \wedge d x^{j}
$$

with $[X, Y]=X Y-Y X$.

Euclidean Vector Bundles

The connection 1-form and the curvatire of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(n)$ but $A \wedge A \in \Omega^{2}(U ; \underline{o}(n))$.

One defines for $A=\sum_{i} A_{i} d x^{i}$ and $B=\sum_{i} B_{i} d x^{i}$

$$
[A, B]=[A \wedge B]=\sum_{i, j}\left[A_{i}, B_{j}\right] d x^{i} \wedge d x^{j}
$$

with $[X, Y]=X Y-Y X . \quad$ Then $A \wedge A=\frac{1}{2}[A, A]$.

Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in E n d_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$.

Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in E n d_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$.
In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{rk}_{\mathbb{R}} E}{2} .
$$

Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in E n d_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$.
In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{rk}_{\mathbb{R}} E}{2} .
$$

There exist local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, J_{p}\right) \rightarrow \mathbb{C}^{k}
$$

is complex linear for all $p \in U$.

Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in E n d_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$.
In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{rk}_{\mathbb{R}} E}{2} .
$$

There exist local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, J_{p}\right) \rightarrow \mathbb{C}^{k}
$$

is complex linear for all $p \in U$.
The transition functions are smooth maps

$$
g: U \cap V \rightarrow G I(k ; \mathbb{C})
$$

Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{\rho}\right\}_{p \in M}$ of complex structures $J_{p} \in \operatorname{End} d_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\operatorname{id}_{E_{p}}$.
In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{rk}_{\mathbb{R}} E}{2} .
$$

There exist local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, J_{p}\right) \rightarrow \mathbb{C}^{k}
$$

is complex linear for all $p \in U$.
The transition functions are smooth maps

$$
g: U \cap V \rightarrow G I(k ; \mathbb{C}) .
$$

Vice versa: A family of such transition functions satisfying the cocycle condition defines a complex vector bundle up to isomorphism.

