# Differential Geometry II <br> Euclidean, Complex and Hermitian Structures 

Klaus Mohnke

May 28, 2020

## Curvature

Let $\nabla$ be a connection on the vector bundle $E \xrightarrow{\pi} M \quad \tau_{k} E=k$ Proposition 57: (1) Let $A \in \Omega^{1}(U ; M(n ; \mathbb{R}))$ be the connection 1-form w.r.t. a trivialization. Then for the curvature we have

$$
F^{\nabla}=: F_{A}=d A+A \wedge A \in \Omega^{2}(U ; M(k ; \mathbb{R}))
$$

w.r.t. the trivialization. Hereby with $\left.A=\left(A_{j}^{i}\right) \in \Omega^{1}(U)\right)$

$$
(A \wedge A)_{j}^{i}=\sum_{\ell=1}^{k} A_{\ell}^{i} \wedge A_{j}^{\ell}
$$

## Curvature

Let $\nabla$ be a connection on the vector bundle $E \xrightarrow{\pi} M$
Proposition 57: (1) Let $A \in \Omega^{1}(U ; M(n ; \mathbb{R}))$ be the connection 1 -form w.r.t. a trivialization. Then for the curvature we have

$$
F^{\nabla}=: F_{A}=d A+A \wedge A \in \Omega^{2}(U ; M(n ; \mathbb{R}))
$$

w.r.t. the trivialization. Hereby with $\left.A=\left(A_{j}^{i}\right) \in \Omega^{1}(U)\right)$

$$
(A \wedge A)_{j}^{i}=\sum_{\ell=1}^{k} A_{\ell}^{i} \wedge A_{j}^{\ell}
$$

(2) Let $\nabla^{0}, \nabla$ be two connections, $\nabla=\nabla^{0}+\alpha$, for $\alpha \in \Omega^{1}(M ; E n d(E))$. Then

$$
F^{\nabla}=F^{\nabla^{0}}+\underline{D^{0} \alpha}+\alpha \wedge \alpha
$$

$\nabla$ camestion on $E \rightarrow \nabla$ induces connection on End $(E)$ :

$$
\begin{aligned}
& i\left(\sigma \in \Gamma(E) \text { section, } \phi \in \Gamma\left(E_{n} d(E)\right)\right. \\
& \quad\left(\nabla_{x} \phi\right)(\sigma):=\nabla_{x}(\phi(\sigma))-\phi\left(\nabla_{x}\right)
\end{aligned}
$$

$\rightarrow$ exterior covariant derivatives $D: \Omega^{k}\left(B, \sin \alpha(E) \mid \rightarrow \Omega^{h+1}(H, \sin \alpha(E))\right.$

## Curvature

Let $\nabla$ be a connection on the vector bundle $E \xrightarrow{\pi} M$
Proposition 57: (1) Let $A \in \Omega^{1}(U ; M(n ; \mathbb{R}))$ be the connection 1 -form w.r.t. a trivialization. Then for the curvature we have

$$
F^{\nabla}=: F_{A}=d A+A \wedge A \in \Omega^{2}(U ; M(n ; \mathbb{R}))
$$

w.r.t. the trivialization. Hereby with $\left.A=\left(A_{j}^{i}\right) \in \Omega^{1}(U)\right)$

$$
(A \wedge A)_{j}^{i}=\sum_{\ell=1}^{k} \underline{A_{\ell}^{i} \wedge A_{j}^{\ell}}
$$

(2) Let $\nabla^{0}, \nabla$ be two connections, $\nabla=\nabla^{0}+\alpha$, for $\alpha \in \Omega^{1}(M ; E n d(E))$. Then

$$
F^{\nabla}=F^{\nabla^{0}}+D^{0} \alpha+\alpha \wedge \alpha .
$$

(3) Let $p \in M, e \in E_{p}, X, Y$ be two vector fields on $M$ in a neighbourhood of $p$. Let $\tilde{X}, \tilde{Y}$ be their horizontal lifts to $E$, $\tilde{X}_{e}=\left(\left.d_{e} \pi\right|_{T^{h} e E}\right)^{-1}\left(X_{\pi(e)}\right)$. Then
$\left.d_{e^{\pi}}\right|_{T_{e}^{K} E:} ^{\pi: E}: T_{R}^{M} E \cong T_{p} M \quad F^{\nabla}(X, Y) e=[\tilde{X}, \tilde{Y}]_{e} .-[X, Y]_{e}$

Curvature
Note: $A \wedge A \neq 0$ in general! As qumed to $\alpha_{1} \alpha=0$ fo

$$
\alpha \in \Omega^{\prime}(H)
$$

Troof of $(1)$ : In hivializtion $\underline{\underline{E}} \cdot \nabla \cdot \Phi^{-1}$ a $C^{*}\left(R, R^{l}\right)$

$$
\begin{aligned}
& \sim \Phi \cdot x \cdot \Phi^{-2}=d+A_{1}=d+A \\
& \Phi \cdot F^{\eta} \cdot \Phi^{-\frac{1}{\sigma}}=\Phi \cdot D^{2} \cdot \Phi^{-\frac{1}{\sigma}}=\left(d+A_{1}\right) \cdot\left(d+A_{\uparrow}\right) \sigma \\
& \sigma \in \Omega^{0}\left(U, R^{R}\right)=\underbrace{d^{2}}+\frac{\left(A_{A}\right) \cdot d \sigma+d(A \sigma)}{}+A_{\wedge} A \sigma \\
&=\left(d A+A_{1} d \sigma+d A \sigma-A_{1} d \sigma+A_{1} A \sigma\right. \\
&=(d)
\end{aligned}
$$

## Curvature

Note: $A \wedge A \neq 0$ in general!
Proof of Proposition 57:

Curvature

2nd Bianchi Identity
Proposition 58: With the notation from above we have

$$
D F^{\nabla}=0
$$

Proof:
ester. con. deriv. mimed rad $P$

$$
\begin{aligned}
& D F^{\nabla} \in \Omega^{3}(M, \operatorname{ma}(E)), \sigma \in \Gamma(E) \text { "tat sidion" } \\
& D F^{\nabla}(\sigma) \in \Omega^{3}(M, E) \\
& " D(\underbrace{\left.F^{\nabla}(\sigma)\right)-F^{\nabla}(D \sigma)}_{\epsilon \Omega^{2}(M, E)}=\left(D\left(D^{2} \sigma\right)-D^{2}(D \sigma)\right. \\
&
\end{aligned}
$$

## Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on $E$ is a smooth family $\left\{g_{p}\right\}_{p \in M}$ of scalar products on the fibres $E_{p}$.

## Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on $E$ is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres $E_{p}$.

A metric connection on a euclidean vector bundle $(E, g)$ is a covariant derivative $\nabla$ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \underline{\tau})
$$

for any pair of (local) sections $\sigma, \tau$ of $E$.

## Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on $E$ is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres $E_{p}$.

A metric connection on a euclidean vector bundle $(E, g)$ is a covariant derivative $\nabla$ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

for any pair of (local) sections $\sigma, \tau$ of $E$.
Remark: (1) The metric condition is much harder to define in terms of the horizontal vector spaces of TE.

## Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on $E$ is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres $E_{p}$.

A metric connection on a euclidean vector bundle $(E, g)$ is a covariant derivative $\nabla$ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau) \quad \longleftarrow
$$

for any pair of (local) sections $\sigma, \tau$ of $E$.
Remark: (1) The metric condition is much harder to define in terms of the horizontal vector spaces of $T E$.
(2) The parallel transport of a metric connection defines isometries between the fibres.

## Euclidean Vector Bundles

Definition 59: Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. A euclidean structure on $E$ is a smooth family $\{g\}_{p \in M}$ of scalar products on the fibres $E_{p}$.

A metric connection on a euclidean vector bundle $(E, g)$ is a covariant derivative $\nabla$ which satisfies in addition

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

for any pair of (local) sections $\sigma, \tau$ of $E$.
Remark: (1) The metric condition is much harder to define in terms of the horizontal vector spaces of TE.
(2) The parallel transport of a metric connection defines isometries between the fibres.
(3) The curvature $F$ of a metric connection is skew-symmetric:

$$
g_{p}\left(F_{p}(e), f\right)=-g_{p}\left(e, F_{p}(f)\right) . \quad e, f \in E_{p}
$$

Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, g_{p}\right) \longrightarrow\left(\mathbb{R}^{k},\langle., .\rangle\right)
$$

is an isometry for all $p \in U$. $\Phi$ will be called euclidean trivialization.
Stat with Livialution $\tilde{\Phi}: \pi^{\because}=(n) \rightarrow \pi \times \otimes^{k}$

$$
v_{i}:=\tilde{\Phi}^{-1}\left(., e_{i}\right) \in \Gamma(u, E \mid u)
$$

$\rightarrow \quad\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{k}\right\}$ forms bans ot $E_{p} \not \forall p \in U$.
apply from. Schmidt: $\left\langle v_{1}, \ldots, v_{\varepsilon} S<\Gamma\left(r, E / n_{1}\right)\right.$ froth forms arhouranal basin. $\longrightarrow \Phi: \pi=(n)-14+R^{\varepsilon}$ a reapiol

## Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, g_{p}\right) \longrightarrow\left(\mathbb{R}^{k},\langle., .\rangle\right)
$$

is an isometry for all $p \in U$. $\Phi$ will be called euclidean trivialization.

In particular, the transition functions are smooth maps

$$
g: U \cap V \rightarrow O(k)=\left\{A \in h(k, R) \mid A^{\top} A=E_{6}\right\}
$$

to the set of orthogonal matrices.

## Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all $E_{p}$ such that the trivializations $\Phi$ can be chosen, so that

$$
\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}
$$

is orientation preserving $w r$ r.t. the standard orientation of $\mathbb{R}^{k}$.

## Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all $E_{p}$ such that the trivializations $\Phi$ can be chosen, so that

$$
\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}
$$

is orientation preserving $w r$ r.t. the standard orientation of $\mathbb{R}^{k}$.
For an oriented euclidean vector bundle and oriented, euclidean trivializatons, the transition functions are smooth maps

$$
g: U \cap V \rightarrow S O(k)
$$

to the set of orthogonal matrices with determinant equal to 1 .

## Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all $E_{p}$ such that the trivializations $\Phi$ can be chosen, so that

$$
\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}
$$

is orientation preserving $w r$ r.t. the standard orientation of $\mathbb{R}^{k}$.
For an oriented euclidean vector bundle and oriented, euclidean trivializatons, the transition functions are smooth maps

$$
g: U \cap V \rightarrow S O(k)
$$

to the set of orthogonal matrices with determinant equal to 1 .
Vice versa: A family of transition funtions

$$
g_{i j}: \underline{U_{i} \cap U_{j}} \rightarrow O(k) \text { or } S O(k)
$$

for an open covering $\left\{U_{i}\right\}_{i \in I}$ satsifying the cocycle condition defines an (oriented) euclidean vector bundle over $M$ up to (orientation) and metric preserving ismomorphisms (short: isometries).

## Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

Euclidean Vector Bundles
The connection 1-form and the curvature of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, ie.

$$
A \in \Omega^{1}(U ; \underline{o}(b)), \quad F \in \Omega^{2}(U ; \underline{o}(\underline{h}))
$$

where $\underline{o}(\mathfrak{k}) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

$$
\left.\underline{o}(k)=\langle A \in M(k, \mathbb{R})| \quad A^{\top}=-A\right\}\left(=T_{\mathbb{E}_{k}} O(k)\right)
$$

## Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}=d A_{j}^{i}+\sum A_{k}^{i} \wedge A_{j}^{k}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.


## Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(\bar{\square}) \Omega^{2}(U, \underline{o}(u))$ but $A \wedge A \in \Omega^{2}(U ; \underline{o}(n))$.

## Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, ie.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(n)$ but $\left.A \wedge A \in \Omega^{2}(U ; \underline{o}(n)) . \quad A_{\wedge} A=\sum_{i j} A_{i} A_{j} d x^{i} \wedge d x^{i}=\sum_{i<j} A_{j} A_{j}-A_{j} A_{i}\right)$
One defines for $A=\sum_{i} A_{i} d x^{i}$ and $B=\sum_{i} B_{i} d x^{i} \quad d x^{\hat{1}} 1 A_{j} ;$

$$
[A, B] \in[A \wedge B])=\sum_{i, j}\left[A_{i}, B_{j}\right] d x^{i} \wedge d x^{j}
$$

with $[X, Y]=X Y-Y X$.

## Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection satisfy

$$
A_{j}^{i}=-A_{i}^{j} \text { and } F_{j}^{i}=-F_{i}^{j}
$$

w.r.t. a euclidean trivialization, i.e.

$$
A \in \Omega^{1}(U ; \underline{o}(n)), \quad F \in \Omega^{2}(U ; \underline{o}(n))
$$

where $\underline{o}(n) \subset M(k ; \mathbb{R})$ denotes the set of skew-symmetric matrices.

Note: For $A, B \in \Omega^{1}(U ; \underline{o}(n))$ in general $A \wedge B \notin \underline{o}(n)$ but $A \wedge A \in \Omega^{2}(U ; \underline{o}(n))$.

One defines for $A=\sum_{i} A_{i} d x^{i}$ and $B=\sum_{i} B_{i} d x^{i}$

$$
[A, B]=\underline{[A \wedge B]}=\sum_{i, j}\left[A_{i}, B_{j}\right] \underline{d x^{i} \wedge d x^{j}}
$$

with $[X, Y]=X Y-Y X$. Then $A \wedge A=\frac{1}{2}[A, A]$ and $F=d A+\frac{1}{2}[A, A]$. very usinal aotatim.

Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in \operatorname{End}_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$, i.e. each fibre $E_{p}$ is a complex vector space.

$$
\begin{aligned}
& \lambda=a+i b / e \in E_{p} \\
& \lambda \cdot e:=a e+b J_{p}(e)
\end{aligned} \quad \text { SLim a } C \text { - vector spae } E_{p}
$$

## Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in \operatorname{End}_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id} E_{p}$, i.e. each fibre $E_{p}$ is a complex vector space.

In particular, the real rank is even and the complex rank is defined to be

$$
k:=\mathrm{rk}_{\mathbb{C}} E:=\frac{\mathrm{rk}_{\mathbb{R}} E}{2}
$$

Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in \operatorname{End}_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$, i.e. each fibre $E_{p}$ is a complex vector space.

In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{rk}_{\mathbb{R}} E}{2}
$$

There exist local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, J_{p}\right) \rightarrow \mathbb{C}^{k}
$$

is complex linear for all $p \in U$.

$$
\begin{aligned}
& \text { aLA } \tilde{\Phi}: \pi^{-1}(3) \rightarrow \eta \times \mathbb{R}^{2 k} \text { be a hrialititic of } \\
& \text { the nil victor beadle. } \\
& \rightarrow \quad\left\{\tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{2 k}\right\}<\Gamma(u, E / h) \\
& p \in U:-i_{i, \ldots, i k} \text { set. }\left\{\tilde{\sim}_{i}(p), \ldots, \tilde{\sim}_{i k}(p)\right\} \quad \mathbb{c} \text {-Sass of } E_{p}
\end{aligned}
$$

## Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in \operatorname{End}_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$, i.e. each fibre $E_{p}$ is a complex vector space.

In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{rk}_{\mathbb{R}} E}{2}
$$

There exist local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, J_{p}\right) \rightarrow \mathbb{C}^{k}
$$

is complex linear for all $p \in U$.
The transition functions are smooth maps

$$
g: U \cap V \rightarrow G I(k ; \mathbb{C}) . \subset G \ell(\alpha d, \notin)
$$

## Complex Vector Bundles

Definition 60: A complex vector bundle is a (real) vector bundle $E \xrightarrow{\pi} M$ together with a smooth family $\left\{J_{p}\right\}_{p \in M}$ of complex structures $J_{p} \in \operatorname{End}_{\mathbb{R}}\left(E_{p}\right), J_{p}^{2}=-\mathrm{id}_{E_{p}}$, i.e. each fibre $E_{p}$ is a complex vector space.
In particular, the real rank is even and the complex rank is defined to be

$$
k=\mathrm{rk}_{\mathbb{C}} E=\frac{\mathrm{r} \mathrm{k}_{\mathbb{R}} E}{2} .
$$

There exist local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ such that

$$
\left.\Phi\right|_{E_{p}}:\left(E_{p}, J_{p}\right) \rightarrow \mathbb{C}^{k}
$$

is complex linear for all $p \in U$.
The transition functions are smooth maps

$$
g: U \cap V \rightarrow G I(k ; \mathbb{C}) .
$$

Vice versa: A family of such transition functions satisfying the cocycle condition defines a complex vector bundle up to isomorphism.

## Complex Vector Bundles

Lemma 61: Let $\nabla$ be a connection on the complex vector bundle $E \xrightarrow{\pi} M$. Then the following conditions are equivalent:

## Complex Vector Bundles

Lemma 61: Let $\nabla$ be a connection on the complex vector bundle $E \xrightarrow{\pi} M$. Then the following conditions are equivalent:
(i) $\nabla J \equiv 0$, i.e. J й pavalal $w . v . t . \nabla \quad \not \subset\left\lceil\left(M, \xi_{n d}(\underline{I})\right)\right.$

## Complex Vector Bundles

Lemma 61: Let $\nabla$ be a connection on the complex vector bundle $E \xrightarrow{\pi} M$. Then the following conditions are equivalent:
(i) $\nabla J \equiv 0$,
(ii) For any smooth $f: M \rightarrow \mathbb{C}$ and section $\sigma: M \rightarrow E$ we have

$$
\nabla(f \sigma)=d f \sigma+f \nabla \sigma \Rightarrow \text { mad dionniz'mle }
$$

## Complex Vector Bundles

Lemma 61: Let $\nabla$ be a connection on the complex vector bundle $E \xrightarrow{\pi} M$. Then the following conditions are equivalent:
(i) $\nabla J \equiv 0$,
(ii) For any smooth $f: M \rightarrow \mathbb{C}$ and section $\sigma: M \rightarrow E$ we have

$$
\nabla(f \sigma)=d f \sigma+f \nabla \sigma
$$

(iii) The connection 1-form w.r.t. any complex trivialization has the form $A \in \Omega^{1}(U ; M(k, \mathbb{C}))$ with $M(k, \mathbb{C}) \subset M(2 k ; \mathbb{R})$ understood as (real) subalgebra.

## Complex Vector Bundles

Lemma 61: Let $\nabla$ be a connection on the complex vector bundle $E \xrightarrow{\pi} M$. Then the following conditions are equivalent:
(i) $\nabla J \equiv 0$,
(ii) For any smooth $f: M \rightarrow \mathbb{C}$ and section $\sigma: M \rightarrow E$ we have

$$
\nabla(f \sigma)=d f \sigma+f \nabla \sigma
$$

(iii) The connection 1-form w.r.t. any complex trivialization has the form $A \in \Omega^{1}(U ; M(k, \mathbb{C}))$ with $M(k, \mathbb{C}) \subset M(2 k ; \mathbb{R})$ understood as (real) subalgebra.

Such a connection is called a complex connection.

Complex Vector Bundles
Proof of Lemma 61：

$$
\text { (i) } \Rightarrow(i i i) \Rightarrow(i i) \Rightarrow(i)
$$



$$
\begin{aligned}
\nabla & =\Phi^{-1} \cdot(d+A) \cdot \Phi \\
\nabla(f \sigma) & =\Phi^{-1}((d+A)(f \cdot \Phi(\sigma)) \quad \Phi(f \sigma)=f \cdot \Phi(\sigma) \\
& =\Phi^{2}\left((d f) \Phi(\sigma)+f d(\Phi(\sigma))+\frac{f A(\Phi(\sigma)))}{}\right. \\
& =(d f) \sigma+f\left(\Phi^{-1}(d+A)(\Phi(\sigma)) \quad A \in \Omega^{\prime}(U, M(1, C))\right. \\
& =(d f) \sigma+f \nabla \sigma
\end{aligned}
$$

$(i i)=(i):$ chore $f=i \quad d f=0$

$$
\nabla(J(\sigma))=\nabla(i \sigma)=i \nabla \sigma=J(P \sigma) \forall \sigma \in \Gamma(u, E(u)
$$

$$
\Rightarrow \nabla J \equiv 0 \quad(\text { definition of 㞹) }
$$

Left with $\quad(i) \Rightarrow(i i i) \quad$.

## Complex Vector Bundles

## Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on $E$ is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on $E_{p}$, i.e. $\mathbb{R}$-bilinear forms which are $\mathbb{C}$-linear in the first and $\mathbb{C}$-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$. In particular, the real part $g=\operatorname{Re}(h)$ is a euclidean structure.

## Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on $E$ is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on $E_{p}$, i.e. $\mathbb{R}$-bilinear forms which are $\mathbb{C}$-linear in the first and $\mathbb{C}$-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$. In particular, the real part $g=\operatorname{Re}(h)$ is a euclidean structure.
(ii) A complex connection $\nabla$ on an Hermitian vector bundle $(E, h)$ is called Hermitian if it is metric w.r.t. $g$, provided $J$ is orthogonal w.r.t. $g$.

## Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on $E$ is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on $E_{p}$, i.e. $\mathbb{R}$-bilinear forms which are $\mathbb{C}$-linear in the first and $\mathbb{C}$-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$. In particular, the real part $g=\operatorname{Re}(h)$ is a euclidean structure.
(ii) A complex connection $\nabla$ on an Hermitian vector bundle $(E, h)$ is called Hermitian if it is metric w.r.t. $g$, provided $J$ is orthogonal w.r.t. $g$.

Remark: $h$ is determined by $g$ and, obviously, vice versa. We have

$$
h(.,):=g(., .)+i g(., J .)
$$

(Exercise)

## Hermitian Vector Bundles

Lemma 63: (i) Let $(E, h)$ be a Hermitian vector bundle over a manifold $M$. Then the local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ can be chosen to be Hermitian isomorphisms.

## Hermitian Vector Bundles

Lemma 63: (i) Let $(E, h)$ be a Hermitian vector bundle over a manifold $M$. Then the local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ can be chosen to be Hermitian isomorphisms.
(ii) The curvature $F$ of a Hermitian connection is skew symmetric w.r.t. $h$ :

$$
h(F \sigma, \tau)=-h(\sigma, F \tau)
$$

## Hermitian Vector Bundles

Lemma 63: (i) Let $(E, h)$ be a Hermitian vector bundle over a manifold $M$. Then the local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ can be chosen to be Hermitian isomorphisms.
(ii) The curvature $F$ of a Hermitian connection is skew symmetric w.r.t. $h$ :

$$
h(F \sigma, \tau)=-h(\sigma, F \tau)
$$

(iii) W.r.t. a trivialization described in (i) the connection 1-form and the curvature satisfy

$$
A_{k}^{\ell}=-\overline{A_{\ell}^{k}} \quad \text { and } F_{k}^{\ell}=-\overline{F_{\ell}^{k}}
$$

Proof: Exercise

## Almost Complex Structures

Definition 64: $M$ smooth manifold of dimension $2 n$. (1) A complex structure $J$ on $T M$ is called almost complex structure on $M$.

## Almost Complex Structures

Definition 64: $M$ smooth manifold of dimension $2 n$. (1) A complex structure $J$ on $T M$ is called almost complex structure on $M$.
(2) A Hermitian metric on $(M, J)$ is a Riemannian metric $g$ such that $J_{p}$ is a isometry at each $p \in M$.

## Almost Complex Structures

Definition 64: $M$ smooth manifold of dimension $2 n$. (1) A complex structure $J$ on $T M$ is called almost complex structure on $M$.
(2) A Hermitian metric on $(M, J)$ is a Riemannian metric $g$ such that $J_{p}$ is a isometry at each $p \in M$.
(3) $\omega(.,):.=g(., J.) \in \Omega^{2}(M)$ is called Kähler form of $(M, J, g)$.

## Almost Complex Structures

Definition 64: $M$ smooth manifold of dimension $2 n$.
(1) A complex structure $J$ on $T M$ is called almost complex structure on $M$.
(2) A Hermitian metric on $(M, J)$ is a Riemannian metric $g$ such that $J_{p}$ is a isometry at each $p \in M$.
(3) $\omega(.,):.=g(., J.) \in \Omega^{2}(M)$ is called Kähler form of $(M, J, g)$.

Remark: (a) As seen above, $(g, J)$ determine via $h:=g+i \omega$ a Hermitian structure on TM.
(b) $\omega$ is non-degenerate: at any $p \in M$ : the linear map $X \in T_{p} M \mapsto \omega(X,.) \in T^{*} M$ is an isomorphism.
Exxamples: (1) $M=\mathbb{C}^{n}$. Then $T_{p} \mathbb{C}^{n} \cong \mathbb{C}^{n}$ and for $X \in T_{p} \mathbb{C}^{n}$

$$
J_{p}(X):=\mathrm{i} X .
$$

## Almost Complex Structures

Examples: (2) Let $(\Sigma, g)$ be an oriented surface with a Riemannian metric $g$. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a hermitian structure on $(\Sigma, J)$.

## Almost Complex Structures

Examples: (2) Let $(\Sigma, g)$ be an oriented surface with a Riemannian metric $g$. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a hermitian structure on $(\Sigma, J)$.
$J$ is unchanged if we replace $g$ by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.

## Almost Complex Structures

Examples: (2) Let $(\Sigma, g)$ be an oriented surface with a Riemannian metric $g$. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a hermitian structure on $(\Sigma, J)$.
$J$ is unchanged if we replace $g$ by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.
There exists an atlas of $\Sigma$ such that for each chart $(U, \varphi, V)$

$$
d \varphi \circ \mathrm{i}=J \circ d \varphi
$$

(non-trivial!). The transition maps in such atlas are holomorphic functions (exercise).

## Almost Complex Structures

Examples: (2) Let $(\Sigma, g)$ be an oriented surface with a Riemannian metric $g$. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a hermitian structure on $(\Sigma, J)$.
$J$ is unchanged if we replace $g$ by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.
There exists an atlas of $\Sigma$ such that for each chart $(U, \varphi, V)$

$$
d \varphi \circ \mathrm{i}=J \circ d \varphi
$$

(non-trivial!). The transition maps in such atlas are holomorphic functions (exercise).
$(\Sigma, J)$ is called Riemann surface, $J$ its conformal structure.

## Almost Complex Structures

Examples: (2) Let $(\Sigma, g)$ be an oriented surface with a Riemannian metric $g$. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a hermitian structure on $(\Sigma, J)$.
$J$ is unchanged if we replace $g$ by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.
There exists an atlas of $\Sigma$ such that for each chart $(U, \varphi, V)$

$$
d \varphi \circ \mathrm{i}=J \circ d \varphi
$$

(non-trivial!). The transition maps in such atlas are holomorphic functions (exercise).
$(\Sigma, J)$ is called Riemann surface, $J$ its conformal structure. In Algebraic Geometry, $(\Sigma, J)$ is called complex curve if $\partial \Sigma=\emptyset$.

## Almost Complex Structures

