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Curvature

Let V be a connection on the vector bundle E = M 'r{ =k
Proposition 57: (1) Let A € Q'(U; M(n;R)) be the connection
1-form w.r.t. a trivialization. Then for the curvature we have

FV = Fpa=dA+ AAA€ Q*U; M(kR))
w.r.t. the trivialization. Hereby with A = (A}) € Q'(V))
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(2) Let VO,V be two connections, V = V° + a, for
a € QY(M; End(E)). Then
FY =FY 4+ D%+ aAa.
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Curvature

Let V be a connection on the vector bundle E = M
Proposition 57: (1) Let A € Q'(U; M(n;R)) be the connection
1-form w.r.t. a trivialization. Then for the curvature we have

FV = Fpa=dA+ AAA€ Q*U; M(n;R))
w.r.t. the trivialization. Hereby with A = (A}) € Q'(V))

(AN A); ZAK N AL
(2) Let VO,V be two connections, V = V° + a, for
a € QY(M; End(E)). Then

FV =FY 4+ D%+ aha.

(3) Let pe M, e € Ep, X, Y be two vector fields on M in a
neighbourhood of p. Let X, Y be their horizontal lifts to E,

Ko = (dem| 7reg){Xn(ey). Then -
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Curvature
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Curvature
Note: A A A # 0 in general!

Proof of Proposition 57:
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2nd Bianchi Identity

Proposition 58: With the notation from above we have

DFY = 0.
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Euclidean Vector Bundles

Definition 59: Let £ 5 M be a smooth vector bundle. A
euclidean structure on E is a smooth family {g},enm of scalar
products on the fibres E,.

A metric connection on a euclidean vector bundle (E, g) is a
covariant derivative V which satisfies in addition

d(g(o,7)) = &(Vo,7) +g(o,VT)
for any pair of (local) sections o, 7 of E.

Remark: (1) The metric condition is much harder to define in
terms of the horizontal vector spaces of TE.

(2) The parallel transport of a metric connection defines isometries
between the fibres.

(3) The curvature F of a metric connection is skew-symmetric:

gfF(e).f) = —g(e.£(N).  efek



Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:
¢ : 7 HU) = U xRk

such that
Ole, : (Ep gp) — (RX, ()

is an isometry for all p € U. ® will be called euclidean
trivialization.
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Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:
¢ : 7 HU) = U xRk

such that
¢|EP : (EP7gP) — (Rkv <'7 >)

is an isometry for all p € U. ® will be called euclidean
trivialization.

In particular, the transition functions are smooth maps
. E
g:UNV = 0k): (Ae ht?) /1”’—4§

to the set of orthogonal matrices.
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Euclidean Vector Bundles

An oriented vector bundle is a choice of orientations of all E, such
that the trivializations ® can be chosen, so that

. k
lg,  Ep — R
is orientation preserving w r.t. the standard orientation of RX.

For an oriented euclidean vector bundle and oriented, euclidean
trivializatons, the transition functions are smooth maps
g:UnV — SO(k)

to the set of orthogonal matrices with determinant equal to 1.

Vice versa: A family of transition funtions
gi:UinU— O(k) or SO(k)

for an open covering {U;};c/ satsifying the cocycle condition
defines an (oriented) euclidean vector bundle over M up to
(orientation) and metric preserving ismomorphisms (short:
isometries).
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satisfy _ ' ' '
Aj = — A and Fi = —F

1

w.r.t. a euclidean trivialization, i.e.

AcQ(Uio(R). F € Q*(U;ok))
where Q(IL) C M(k;R) denotes the set of skew—symmetric
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Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection

satisfy ' ' ' .
Aj = — A and Fi = —F

w.r.t. a euclidean trivialization, i.e.

Ae QY (U;o(n)), F e Q*U;o(n))

where o(n) C M(k;R) denotes the set of skew—symmetric
matrices.

lA; A
Note: For A, B € Q1(U; o(n)) in general AAB ¢ o(n) . ~L
but ANA € Q2(Uio(n).  Axh = I AA; eiade’s fA,A 74,4)

7 L‘j

One defines for A= 3", Aidx’ and B =Y, B;dx’ /f’ﬁ/

[A, 516 [A N Bll= Z[A,,B]dx A dxd

with [X, Y] = XY — YX.



Euclidean Vector Bundles

The connection 1-form and the curvature of a metric connection
satisfy

P i p
Al = Al and F/ = —F/

1

w.r.t. a euclidean trivialization, i.e.

Ac QYU;o(n), F e Q%(U;o(n))
where o(n) C M(k;R) denotes the set of skew—symmetric
matrices.

Note: For A, B € QY(U; o(n)) in general AA B ¢ o(n)
but AA A € Q2(U; o(n)).

One defines for A= 3; Aidx’ and B =3, Bidx’
[A,B] = [AA Bl = [A;, Bjldx' A dx! —
ij —
with [X, Y] = XY — YX. Then AAA=1[A A] and
F=dA+3[A Al  aty wonut asdakke



Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector
bundle E 5 M together with a smooth family {J,}pem of complex
structures J, € Endg(Ep), J2 = —idg,, i.e. each fibre E, is a
complex vector space.
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Definition 60: A complex vector bundle is a (real) vector
bundle E 5 M together with a smooth family {J,}pem of complex
structures J, € Endg(Ep), J2 = —idg,, i.e. each fibre E, is a
complex vector space. 1D

In particular, the real rank is even and the complex rank is defined

to be
rkRE

2
There exist local trivializations ® : 771(U) — U x Ck such that

D, : (E,,,J ) — Ck

k = rkcE =

is complex linear for all p € U.

AR Y &

NS, vk < M L:/Z()
) /! (p)g -Sase A &

pele_ s I Vit (oG, (-5
~ D) Gm wbdd. VU dp s, e z.]V, /\HH/(7 Ygel.

éc I's {\n"‘//.'/f[l— ”f
& ol qﬂo/u ém(/&,



Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector
bundle E 5 M together with a smooth family {J,}pem of complex
structures J, € Endg(Ep), J2 = —idg,, i.e. each fibre E, is a
complex vector space.

In particular, the real rank is even and the complex rank is defined
to be ko E
k = rkeE =~ § .

There exist local trivializations ® : 771(U) — U x Ck such that
®lg, : (Ep, Jp) — Cck

is complex linear for all p € U.

The transition functions are smooth maps

g:UNV = Gl(k;C). © GZ(2,R)



Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector
bundle E 5 M together with a smooth family {J,}pem of complex
structures J, € Endg(Ep), J2 = —idg,, i.e. each fibre E, is a
complex vector space.

In particular, the real rank is even and the complex rank is defined
to be ko E
k = rkeE =~ § .

There exist local trivializations ® : 771(U) — U x Ck such that
®lg, : (Ep, Jp) — Cck

is complex linear for all p € U.

The transition functions are smooth maps
g:uUnV — Gl(k;C).
w Vice versa: A family of such transition functions satisfying the

cocycle condition defines a complex vector bundle up to
isomorphism.
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Lemma 61: Let V be a connection on the complex vector bundle
E 5 M. Then the following conditions are equivalent:
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Lemma 61: Let V be a connection on the complex vector bundle
E 5 M. Then the following conditions are equivalent:

(i) V=0,
(ii) For any smooth f : M — C and section o : M — E we have
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(iii) The connection 1-form w.r.t. any complex trivialization has

the form A € Q1(U; M(k,C)) with M(k,C) C M(2k; R)
understood as (real) subalgebra.



Complex Vector Bundles

Lemma 61: Let V be a connection on the complex vector bundle
E 5 M. Then the following conditions are equivalent:

(i) V=0,
(ii) For any smooth f : M — C and section o : M — E we have

V(fo)=dfo+ fVo

(iii) The connection 1-form w.r.t. any complex trivialization has

the form A € Q1(U; M(k,C)) with M(k,C) C M(2k; R)
understood as (real) subalgebra.

Such a connection is called a complex connection.



Complex Vector Bundles
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Hermitian Vector Bundles

Definition 62: (i) Let £ > M be a complex vector bundle. A
Hermitian structure on E is a smooth family {hp}pep of
Hermitian products on E,, i.e. R-bilinear forms which are C-linear
in the first and C-antilinear in the second component, satisfy
hp(w,v) = hy(v,w) for v,w € E, and hp(v,v) > 0if v # 0. In
particular, the real part g = Re(h) is a euclidean structure.
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Hermitian Vector Bundles

Definition 62: (i) Let E > M be a complex vector bundle. A
Hermitian structure on E is a smooth family {hp}pep of
Hermitian products on E,, i.e. R-bilinear forms which are C-linear
in the first and C-antilinear in the second component, satisfy
hp(w,v) = hy(v,w) for v,w € E, and hp(v,v) > 0if v # 0. In
particular, the real part g = Re(h) is a euclidean structure.

(i) A complex connection V on an Hermitian vector bundle (E, h)
is called Hermitian if it is metric w.r.t. g, provided J is orthogonal
w.rt. g.

Remark: h is determined by g and, obviously, vice versa. We have

h(.,) =g(.,.)+ig(.,J.)

(Exercise)
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Hermitian Vector Bundles

Lemma 63: (i) Let (E, h) be a Hermitian vector bundle over a
manifold M. Then the local trivializations  : 7=(U) — U x Ck
can be chosen to be Hermitian isomorphisms.

(ii) The curvature F of a Hermitian connection is skew symmetric
w.r.t. h:
h(Fo,7) = —h(o, F1).

(iii) W.r.t. a trivialization described in (i) the connection 1-form
and the curvature satisfy

Al = —AFk  and F{ = —FF.

Proof: Exercise
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Almost Complex Structures

Definition 64: M smooth manifold of dimension 2n.

(1) A complex structure J on TM is called almost complex
structure on M.

(2) A Hermitian metric on (M, J) is a Riemannian metric g such
that J, is a isometry at each p € M.

(3) w(.,.) == g(.,J.) € Q3(M) is called Kshler form of (M, J, g).

Remark: (a) As seen above, (g, J) determine via h:= g + iw a
Hermitian structure on TM.

(b) w is non-degenerate: at any p € M: the linear map

X € ToM— w(X,.) € T*M is an isomorphism.

Exxamples: (1) M = C". Then T,C" = C" and for X € T,C"

Ip(X) = iX.
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Examples: (2) Let (X, g) be an oriented surface with a
Riemannian metric g. For X € T,X we define J,(X) by requiring,
that {X; Jp(X)} is an oriented orthonormal basis of (T,X, gp).
Jp(X) is the counterclockwise rotated X! g defines a hermitian
structure on (X, J).
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Almost Complex Structures

Examples: (2) Let (X, g) be an oriented surface with a
Riemannian metric g. For X € T,X we define J,(X) by requiring,
that {X; Jp(X)} is an oriented orthonormal basis of (T,X, gp).
Jp(X) is the counterclockwise rotated X! g defines a hermitian
structure on (X, J).

J is unchanged if we replace g by \?g for A : ¥ — R, smooth.
There exists an atlas of ¥ such that for each chart (U, ¢, V)

dpoi=Jodep.

(non-trivial!). The transition maps in such atlas are holomorphic
functions (exercise).

(X, J) is called Riemann surface, J its conformal structure. In
Algebraic Geometry, (X, J) is called complex curve if 0 = ().



Almost Complex Structures



