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Curvature
Let ∇ be a connection on the vector bundle E π→ M
Proposition 57: (1) Let A ∈ Ω1(U; M(n;R)) be the connection
1-form w.r.t. a trivialization. Then for the curvature we have

F∇ =: FA = dA + A ∧ A ∈ Ω2(U; M(n;R))
w.r.t. the trivialization. Hereby with A = (Ai

j) ∈ Ω1(U))

(A ∧ A)i
j =

k∑
`=1

Ai
` ∧ A`j .

(2) Let ∇0,∇ be two connections, ∇ = ∇0 + α, for
α ∈ Ω1(M; End(E )). Then

F∇ = F∇0 + D0α + α ∧ α.

(3) Let p ∈ M, e ∈ Ep, X ,Y be two vector fields on M in a
neighbourhood of p. Let X̃ , Ỹ be their horizontal lifts to E ,
X̃e = (deπ|T heE )(Xπ(e)). Then

F∇(X ,Y )e = [X̃ , Ỹ ]e .
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neighbourhood of p. Let X̃ , Ỹ be their horizontal lifts to E ,
X̃e = (deπ|T heE )(Xπ(e)). Then

F∇(X ,Y )e = [X̃ , Ỹ ]e .



Curvature
Note: A ∧ A 6= 0 in general!

Proof of Proposition 57:
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2nd Bianchi Identity
Proposition 58: With the notation from above we have

DF∇ = 0.

Proof:



Euclidean Vector Bundles
Definition 59: Let E π→ M be a smooth vector bundle. A
euclidean structure on E is a smooth family {g}p∈M of scalar
products on the fibres Ep.

A metric connection on a euclidean vector bundle (E , g) is a
covariant derivative ∇ which satisfies in addition

d(g(σ, τ)) = g(∇σ, τ) + g(σ,∇τ)

for any pair of (local) sections σ, τ of E .

Remark: (1) The metric condition is much harder to define in
terms of the horizontal vector spaces of TE .
(2) The parallel transport of a metric connection defines isometries
between the fibres.
(3) The curvature F of a metric connection is skew-symmetric:

g(F (e), f ) = −g(e,F (f )).
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Euclidean Vector Bundles

A euclidean vector bundle can be locally trivialised by isometries:

Φ : π−1(U)→ U × Rk

such that
Φ|Ep : (Ep, gp) −→ (Rk , 〈., .〉)

is an isometry for all p ∈ U. Φ will be called euclidean
trivialization.

In particular, the transition functions are smooth maps

g : U ∩ V → O(k)

to the set of orthogonal matrices.
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Euclidean Vector Bundles
An oriented vector bundle is a choice of orientations of all Ep such
that the trivializations Φ can be chosen, so that

Φ|Ep : Ep → Rk

is orientation preserving w r.t. the standard orientation of Rk .

For an oriented euclidean vector bundle and oriented, euclidean
trivializatons, the transition functions are smooth maps

g : U ∩ V → SO(k)

to the set of orthogonal matrices with determinant equal to 1.

Vice versa: A family of transition funtions

gij : Ui ∩ Uj → O(k) or SO(k)

for an open covering {Ui}i∈I satsifying the cocycle condition
defines an (oriented) euclidean vector bundle over M up to
(orientation) and metric preserving ismomorphisms (short:
isometries).
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Euclidean Vector Bundles
The connection 1-form and the curvature of a metric connection
satisfy

Ai
j = −Aj

i and F i
j = −F j

i

w.r.t. a euclidean trivialization, i.e.

A ∈ Ω1(U; o(n)), F ∈ Ω2(U; o(n))
where o(n) ⊂ M(k;R) denotes the set of skew–symmetric
matrices.

Note: For A,B ∈ Ω1(U; o(n)) in general A ∧ B 6∈ o(n)
but A ∧ A ∈ Ω2(U; o(n)).

One defines for A =
∑

i Aidx i and B =
∑

i Bidx i

[A,B] = [A ∧ B] =
∑
i ,j

[Ai ,Bj ]dx i ∧ dx j

with [X ,Y ] = XY − YX . Then A ∧ A = 1
2 [A,A] and

F = dA + 1
2 [A,A].
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Complex Vector Bundles
Definition 60: A complex vector bundle is a (real) vector
bundle E π→ M together with a smooth family {Jp}p∈M of complex
structures Jp ∈ EndR(Ep), J2

p = −idEp , i.e. each fibre Ep is a
complex vector space.

In particular, the real rank is even and the complex rank is defined
to be

k = rkCE = rkRE
2 .

There exist local trivializations Φ : π−1(U)→ U × Ck such that
Φ|Ep : (Ep, Jp)→ Ck

is complex linear for all p ∈ U.

The transition functions are smooth maps
g : U ∩ V → Gl(k;C).

Vice versa: A family of such transition functions satisfying the
cocycle condition defines a complex vector bundle up to
isomorphism.
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Complex Vector Bundles

Lemma 61: Let ∇ be a connection on the complex vector bundle
E π→ M. Then the following conditions are equivalent:

(i) ∇J ≡ 0,

(ii) For any smooth f : M → C and section σ : M → E we have

∇(f σ) = df σ + f∇σ

(iii) The connection 1-form w.r.t. any complex trivialization has

the form A ∈ Ω1(U; M(k,C)) with M(k,C) ⊂ M(2k;R)
understood as (real) subalgebra.

Such a connection is called a complex connection.
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Complex Vector Bundles
Proof of Lemma 61:
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Hermitian Vector Bundles

Definition 62: (i) Let E π→ M be a complex vector bundle. A
Hermitian structure on E is a smooth family {hp}p∈M of
Hermitian products on Ep, i.e. R-bilinear forms which are C-linear
in the first and C-antilinear in the second component, satisfy
hp(w , v) = hp(v ,w) for v ,w ∈ Ep and hp(v , v) > 0 if v 6= 0. In
particular, the real part g = Re(h) is a euclidean structure.

(ii) A complex connection ∇ on an Hermitian vector bundle (E , h)
is called Hermitian if it is metric w.r.t. g , provided J is orthogonal
w.r.t. g .

Remark: h is determined by g and, obviously, vice versa. We have

h(., ) := g(., .) + ig(., J .)

(Exercise)
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Hermitian Vector Bundles

Lemma 63: (i) Let (E , h) be a Hermitian vector bundle over a
manifold M. Then the local trivializations Φ : π−1(U)→ U × Ck

can be chosen to be Hermitian isomorphisms.

(ii) The curvature F of a Hermitian connection is skew symmetric
w.r.t. h:

h(Fσ, τ) = −h(σ,Fτ).

(iii) W.r.t. a trivialization described in (i) the connection 1–form
and the curvature satisfy

A`k = −Ak
` and F `k = −F k

` .

Proof: Exercise
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Almost Complex Structures

Definition 64: M smooth manifold of dimension 2n.
(1) A complex structure J on TM is called almost complex
structure on M.

(2) A Hermitian metric on (M, J) is a Riemannian metric g such
that Jp is a isometry at each p ∈ M.
(3) ω(., .) := g(., J .) ∈ Ω2(M) is called Kähler form of (M, J , g).

Remark: (a) As seen above, (g , J) determine via h := g + iω a
Hermitian structure on TM.
(b) ω is non-degenerate: at any p ∈ M: the linear map
X ∈ TpM 7→ ω(X , .) ∈ T ∗M is an isomorphism.
Exxamples: (1) M = Cn. Then TpCn ∼= Cn and for X ∈ TpCn

Jp(X ) := iX .
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(3) ω(., .) := g(., J .) ∈ Ω2(M) is called Kähler form of (M, J , g).

Remark: (a) As seen above, (g , J) determine via h := g + iω a
Hermitian structure on TM.
(b) ω is non-degenerate: at any p ∈ M: the linear map
X ∈ TpM 7→ ω(X , .) ∈ T ∗M is an isomorphism.
Exxamples: (1) M = Cn. Then TpCn ∼= Cn and for X ∈ TpCn

Jp(X ) := iX .
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Examples: (2) Let (Σ, g) be an oriented surface with a
Riemannian metric g . For X ∈ TpΣ we define Jp(X ) by requiring,
that {X ; Jp(X )} is an oriented orthonormal basis of (TpΣ, gp).
Jp(X ) is the counterclockwise rotated X ! g defines a hermitian
structure on (Σ, J).

J is unchanged if we replace g by λ2g for λ : Σ→ R+ smooth.

There exists an atlas of Σ such that for each chart (U, ϕ,V )

dϕ ◦ i = J ◦ dϕ.

(non-trivial!). The transition maps in such atlas are holomorphic
functions (exercise).

(Σ, J) is called Riemann surface, J its conformal structure. In
Algebraic Geometry, (Σ, J) is called complex curve if ∂Σ = ∅.
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