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Complex Vector Bundles

Lemma 61: Let V be a connection on the complex vector bundle
E 5 M. Then the following conditions are equivalent:

(i) VJ=0,

(ii) For any smooth f : M — C and section o : M — E we have
V(fo) =dfo+ Vo

(iii) The connection 1-form w.r.t. any complex trivialization has

the form A € Q1(U; M(k,C)) with M(k,C) C M(2k; R)
understood as (real) subalgebra.

Such a connection is called a complex connection.
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Hermitian Vector Bundles

Definition 62: (i) Let £ > M be a complex vector bundle. A
Hermitian structure on E is a smooth family {hp}pep of
Hermitian products on E,, i.e. R-bilinear forms which are C-linear
in the first and C-antilinear in the second component, satisfy
hp(w, v) = hp(v,w) for v,w € E, and hp(v,v) > 0if v # 0.
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Hermitian Vector Bundles

Definition 62: (i) Let £ > M be a complex vector bundle. A
Hermitian structure on E is a smooth family {hp}pep of
Hermitian products on E,, i.e. R-bilinear forms which are C-linear
in the first and C-antilinear in the second component, satisfy
hp(w, v) = hp(v,w) for v,w € E, and hp(v,v) > 0if v # 0.

In particular, the real part, g = Re(h), is a euclidean structure and
J is orthogonal w.r.t. g.

(i) A complex connection V on an Hermitian vector bundle (E, h)
is called Hermitian if it is metric w.r.t. g.

Remark: h is determined by g and, obviously, vice versa. We have

h.,.) =g(,)+ig(.J) (< C)

(Exercise)
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Hermitian Vector Bundles

Lemma 63: (i) Let (E, h) be a Hermitian vector bundle over a
manifold M. Then the local trivializations  : 7=(U) — U x Ck
can be chosen to be Hermitian isomorphisms.

(ii) The curvature F of a Hermitian connection is skew symmetric
w.r.t. h:
h(Fo,7) = —h(o, F1).

(iii) W.r.t. a trivialization described in (i) the connection 1-form
and the curvature satisfy
Al = —Ak and Ff = —Ff.

Proof: Exercise [/
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Almost Complex Structures
Definition 64: M smooth manifold of dimension 2n.
(1) A complex structure J on TM is called almost complex
structure on M.
(2) A Hermitian metric on (M, J) is a Riemannian metric g such
that J, is a isometry at each p € M.
(3) w(.,.) :== —g(.,J.) € Q*(M) is called Kahler form of
(M, J, g).

Remark: (a) As seen above, (g, J) determine via h:= g—iw a

Hermitian structure on TM.

(b) w is non-degenerate: at any p € M: the linear map
on-degenerat

XeTM—uw(X,.)e T'M

is an isomorphism.
Examples: (1) M = C". Then T,C" = C" and for X € T,C"

Jp(X) :=iX

and the standard Hermitian form (., .).
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Examples: (2) Let (X, g) be an oriented surface with a /[X/g:i
Riemannian metric g. For X € T,X we define J,(X) by requiring,
that {X; Jp(X)} is an oriented orthonormal basis of (T,X, gp)—
Jp(X) is the counterclockwise rotated X! g defines a Hermitian
structure on (X, J).
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Examples: (2) Let (X, g) be an oriented surface with a
Riemannian metric g. For X € T,X we define J,(X) by requiring,
that {X; Jp(X)} is an oriented orthonormal basis of (T,X, gp).
Jp(X) is the counterclockwise rotated X! g defines a Hermitian
structure on (X, J).

J is unchanged if we replace g by \?g for A : ¥ — R, smooth.
There exists an atlas of ¥ such that for each chart (U, ¢, V)

dpoi=Jodep.

(non-trivial!). The transition maps in such atlas are holomorphic
functions (exercise).

(X, J) is called Riemann surface, J its conformal structure. In
Algebraic Geometry, (X, J) is called complex curve if 0 = ().
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Kahler Manifolds

Definition 65: Let (M, J) be an almost complex manifold. The
Nijenhuis-Tensor, N, is the (1,2)-tensor given on (local) vector
fields X, Y by

Ny(X, Y) = [X, Y]+ J[UX, Y]+ J[X, JY] — [JX, JY].

Remark: (M, J) is a complex manifold, i.e. M admits an atlas
such that the (complex components) of the transition functions are
holomorphic in all complex variables such that J corresponds to
multiplication by i = v/—1 if and only if N; = 0 (very hard).

Proposition 66: Let (M, J, g) be a an almost Hermitian
manifold, let V be the Levi-Civita connection of (M, g).

V is a complex connection of (TM, J) if and only if dw = 0 and
the Nijenhuis-tensor N; =0
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Kahler Manifolds

Proof: (=) Assume V is complex, i.e. VJ = 0. Moreover, since
V is metric we have Vg = 0.

w(.,.) =—g(.,J.), thus Vw = 0.
Cartan's formula (see Problem Set 6) for dw reads

dw(X,Y,Z) = X(w(Y, 2)) + Y(w(Z, X)) + Z(w(X, Y))
—w(X,[Y,Z]) —w(Y,[Z.X]) - w(Z,[X, Y])

Since V is torsion free we obtain

dw(X,Y,2Z) = X(w(Y,2))+ Y(w(Z, X)) + Z(w(X, Y))
- w(X,VyZ - V2Y) - w(Y, sz - sz) - w(Z, ny - VyX)

=[t7]



Kahler Manifolds

Proof: (=) Assume V is complex, i.e. VJ = 0. Moreover, since
V is metric we have Vg = 0.

w(.,.) =—g(.,J.), thus Vw = 0.
Cartan's formula (see Problem Set 6) for dw reads

dw(X,Y,Z) = X(w(Y, 2)) + Y(w(Z, X)) + Z(w(X, Y))
—w(X,[Y,Z]) —w(Y,[Z.X]) - w(Z,[X, Y])

Since V is torsion free we obtain
dw(X,Y,2) !YJZH—FY X))+ Z(w(X,Y))
—w(X,VyZ V2Y)—w(Y,V2X VXZ)Z_ (Z,ny—VyX)

Finally, last ex ressmn ie o
Y R ST it t2) ~c (4 1)

(Vxw)(Y, Z) + (Vyw)(Z, X) + (VZzw)(X, Y) = 0

and vanishes since Vw=0. =2 o« =%
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Kahler Manifolds

Need to show that VJ = 0 for V torsion free implies N; = 0.

Ny(X,Y) = [X, Y]+ J[UX, Y]+ J[X, JY] = [UX, JY]

= V)(Y—VyX-I-J(VJXy—Vy(JX))

+J(Vx(IY )=V iy X) =V x (JY)+ Vv (IX)
=J((VxI)Y/= (VyI)X) = J(Vux )Y = (Viy I)X)
=0

since VJ =0 and (VJ)X = V(JX) — JVX.
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<) Using Koszul's formula for the Levi-Civita connection V
K2 ek E
2g(VXYaZ)
+g([Xa Y],Z) - g([Y,Z],X) +g([Z,X], Y)
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(<) Using Koszul's formula for the Levi-Civita connection V

2¢(VxY,2)
= X(g(Y,2)) + Y(g(Z,X)) — Z(&(X, Y))
+g([X, Y],Z) —g([Y,Z],X) +g([Z,X], Y)

one obtains a formula like
28((VxJ)Y,Z) = (dw)(X,Y,Z) + g(X, Ny(Y, 2)),
for all tangent vectors X,Y,Z € T,M and hence

VJ=0.
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