Differential Geometry II
 Almost Complex Manifolds,

Klaus Mohnke

June 2, 2020

Complex Vector Bundles

Lemma 61: Let ∇ be a connection on the complex vector bundle $E \xrightarrow{\pi} M$. Then the following conditions are equivalent:
(i) $\nabla J \equiv 0$,
(ii) For any smooth $f: M \rightarrow \mathbb{C}$ and section $\sigma: M \rightarrow E$ we have

$$
\nabla(f \sigma)=d f \sigma+f \nabla \sigma
$$

(iii) The connection 1-form w.r.t. any complex trivialization has the form $A \in \Omega^{1}(U ; M(k, \mathbb{C}))$ with $M(k, \mathbb{C}) \subset M(2 k ; \mathbb{R})$ understood as (real) subalgebra.

Such a connection is called a complex connection.

Complex Vector Bundles
Proof of Lemma 61: (i) \Rightarrow (iii)
$\nabla J \equiv 0$. Choone cplx Sivinatitation

$$
\begin{aligned}
& (\pi, \varphi) \\
& \text { I: } \pi^{-1}(k) \rightarrow K \times \mathbb{C}^{k} \\
& \approx u \times \mathbb{R}^{2 k}
\end{aligned}
$$

Let $A \in \Omega^{\prime}(U, M(26, R))$ in the carspandiy cunuction 1 forn. mis. ly_{i}

$$
\begin{aligned}
& \left.\nabla J \equiv 0 \Leftrightarrow(d+A) \cdot 子_{0}-J_{0}+d+A\right)=0 \\
& \text { (จJ) } \sigma=P(J \sigma)-J \cdot P \sigma \\
& \Leftrightarrow A \cdot \bar{J}_{0}-\bar{J}_{0} \cdot A=0 \\
& \text { onf-of } \stackrel{\leftrightarrows}{\mathbb{C}} \text {-nulet } A \text { } \bar{C} \cdot \text { linear }
\end{aligned}
$$

Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on E is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on E_{p}, i.e. \mathbb{R}-bilinear forms which are \mathbb{C}-linear in the first and \mathbb{C}-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$.

Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on E is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on E_{p}, i.e. \mathbb{R}-bilinear forms which are \mathbb{C}-linear in the first and \mathbb{C}-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$.

In particular, the real part, $g=\operatorname{Re}(h)$, is a euclidean structure and J is orthogonal w.r.t. g.

Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on E is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on E_{p}, i.e. \mathbb{R}-bilinear forms which are \mathbb{C}-linear in the first and \mathbb{C}-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$.

In particular, the real part, $g=\operatorname{Re}(h)$, is a euclidean structure and J is orthogonal w.r.t. g.
(ii) A complex connection ∇ on an Hermitian vector bundle (E, h) is called Hermitian if it is metric w.r.t. g.

Hermitian Vector Bundles

Definition 62: (i) Let $E \xrightarrow{\pi} M$ be a complex vector bundle. A Hermitian structure on E is a smooth family $\left\{h_{p}\right\}_{p \in M}$ of Hermitian products on E_{p}, i.e. \mathbb{R}-bilinear forms which are \mathbb{C}-linear in the first and \mathbb{C}-antilinear in the second component, satisfy $h_{p}(w, v)=\overline{h_{p}(v, w)}$ for $v, w \in E_{p}$ and $h_{p}(v, v)>0$ if $v \neq 0$.

In particular, the real part, $g=\operatorname{Re}(h)$, is a euclidean structure and J is orthogonal w.r.t. g.
(ii) A complex connection ∇ on an Hermitian vector bundle (E, h) is called Hermitian if it is metric w.r.t. g.

Remark: h is determined by g and, obviously, vice versa. We have

$$
h(., .):=g(., .)+i g(., J .) \quad(\in \mathbb{C})
$$

(Exercise)

Hermitian Vector Bundles

Lemma 63: (i) Let (E, h) be a Hermitian vector bundle over a manifold M. Then the local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ can be chosen to be Hermitian isomorphisms.

Hermitian Vector Bundles

Lemma 63: (i) Let (E, h) be a Hermitian vector bundle over a manifold M. Then the local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ can be chosen to be Hermitian isomorphisms.
(ii) The curvature F of a Hermitian connection is skew symmetric w.r.t. h :

$$
h(F \sigma, \tau)=-h(\sigma, F \tau)
$$

Hermitian Vector Bundles

Lemma 63: (i) Let (E, h) be a Hermitian vector bundle over a manifold M. Then the local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{k}$ can be chosen to be Hermitian isomorphisms.
(ii) The curvature F of a Hermitian connection is skew symmetric w.r.t. h :

$$
h(F \sigma, \tau)=-h(\sigma, F \tau)
$$

(iii) W.r.t. a trivialization described in (i) the connection 1-form and the curvature satisfy

$$
A_{k}^{\ell}=-\overline{A_{\ell}^{k}} \quad \text { and } F_{k}^{\ell}=-\overline{F_{\ell}^{k}}
$$

Proof: Exercise \square

$$
\begin{aligned}
& \text { Rok: } A \in \Omega^{\prime}(u, u(k)), F \in \Omega^{2}(u, \underline{u}(k)) \\
& \underline{u}(h)=\left\{B \in M\left(k^{\prime} ; \mathbb{C}\right) / B=-\bar{B}^{T}\right\} .
\end{aligned}
$$

Almost Complex Structures

Definition 64: M smooth manifold of dimension $2 n$.
(1) A complex structure J on $T M$ is called almost complex structure on M.

Almost Complex Structures

Definition 64: M smooth manifold of dimension $2 n$.
(1) A complex structure J on $T M$ is called almost complex structure on M.
(2) A Hermitian metric on (M, J) is a Riemannian metric g such that J_{p} is a isometry at each $p \in M$.

Almost Complex Structures

Definition 64: M smooth manifold of dimension $2 n$.
(1) A complex structure J on $T M$ is called almost complex structure on M.
(2) A Hermitian metric on (M, J) is a Riemannian metric g such that J_{p} is a isometry at each $p \in M$.
(3) $\omega(.,):.=-g(., J.) \in \Omega^{2}(M)$ is called Kähler form of (M, J, g).

Almost Complex Structures

Definition 64: M smooth manifold of dimension $2 n$.
(1) A complex structure J on $T M$ is called almost complex structure on M.
(2) A Hermitian metric on (M, J) is a Riemannian metric g such that J_{p} is a isometry at each $p \in M$.
(3) $\omega(.,):.=-g(., J.) \in \Omega^{2}(M)$ is called Kähler form of (M, J, g).

Remark: (a) As seen above, (g, J) determine via $h:=g-\mathrm{i} \omega$ a Hermitian structure on $T M$.

Almost Complex Structures

Definition 64: M smooth manifold of dimension $2 n$.
(1) A complex structure J on $T M$ is called almost complex structure on M.
(2) A Hermitian metric on (M, J) is a Riemannian metric g such that J_{p} is a isometry at each $p \in M$.
(3) $\omega(.,):.=-g(., J.) \in \Omega^{2}(M)$ is called Kähler form of (M, J, g).

Remark: (a) As seen above, (g, J) determine via $h:=g-\mathrm{i} \omega$ a Hermitian structure on TM.
(b) ω is non-degenerate: at any $p \in M$: the linear map

$$
X \in T_{p} M \mapsto \omega(X, .) \in T_{p}^{*} M
$$

is an isomorphism.
Examples: (1) $M=\mathbb{C}^{n}$. Then $T_{p} \mathbb{C}^{n} \cong \mathbb{C}^{n}$ and for $X \in T_{p} \mathbb{C}^{n}$

$$
J_{p}(X):=\mathrm{i} X
$$

and the standard Hermitian form $\langle.,$.$\rangle .$

Almost Complex Structures

Examples: (2) Let (Σ, g) be an oriented surface with a $\|x\|_{g}=1$ Riemannian metric g. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right) \longleftarrow$ $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a Hermitian structure on (Σ, J).

Almost Complex Structures

Examples: (2) Let (Σ, g) be an oriented surface with a Riemannian metric g. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of ($\left.T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a Hermitian structure on (Σ, J).
J is unchanged if we replace g by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.

$$
\begin{aligned}
\left\langle x, J_{0}(x) \zeta \sim\left\langle\frac{x}{\lambda}, \frac{J_{p}(x)}{\lambda}\right\} \quad J_{p}^{\lambda}\left(\frac{x}{\lambda}\right)\right. & =\frac{J_{p}(x)}{\lambda} \\
\frac{1}{\lambda} J_{p}^{\lambda^{\prime \prime}}(x) & \Rightarrow J_{p}^{\lambda}(x)=J_{p}(x)
\end{aligned}
$$

Almost Complex Structures

Examples: (2) Let (Σ, g) be an oriented surface with a Riemannian metric g. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a Hermitian structure on (Σ, J).
J is unchanged if we replace g by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.
There exists an atlas of Σ such that for each chart (U, φ, V)

$$
d \varphi \circ \mathrm{i}=J \circ d \varphi
$$

$$
\varphi: V \in \subset \rightarrow G \subset \Sigma^{\prime}
$$

(non-trivial!). The transition maps in such atlas are holomorphic functions (exercise).

Almost Complex Structures

Examples: (2) Let (Σ, g) be an oriented surface with a Riemannian metric g. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a Hermitian structure on (Σ, J). $\quad g, \lambda^{2} g \ldots$ corformally equivalutit. J is unchanged if we replace \underline{g} by $\underline{\lambda^{2} g}$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.
There exists an atlas of Σ such that for each chart (U, φ, V)

$$
d \varphi \circ \mathrm{i}=J \circ d \varphi
$$

(non-trivial!). The transition maps in such atlas are holomorphic functions (exercise).
(Σ, J) is called Riemann surface, J its conformal structure.

Almost Complex Structures

Examples: (2) Let (Σ, g) be an oriented surface with a Riemannian metric g. For $X \in T_{p} \Sigma$ we define $J_{p}(X)$ by requiring, that $\left\{X ; J_{p}(X)\right\}$ is an oriented orthonormal basis of $\left(T_{p} \Sigma, g_{p}\right)$. $J_{p}(X)$ is the counterclockwise rotated $X!g$ defines a Hermitian structure on (Σ, J).
J is unchanged if we replace g by $\lambda^{2} g$ for $\lambda: \Sigma \rightarrow \mathbb{R}_{+}$smooth.
There exists an atlas of Σ such that for each chart (U, φ, V)

$$
d \varphi \circ \mathrm{i}=J \circ d \varphi
$$

(non-trivial!). The transition maps in such atlas are holomorphic functions (exercise).
(Σ, J) is called Riemann surface, J its conformal structure. In Algebraic Geometry, (Σ, J) is called complex curve if $\partial \Sigma=\emptyset$.

Kähler Manifolds

Definition 65: Let (M, J) be an almost complex manifold. The Nijenhuis-Tensor, N_{J} is the (1,2)-tensor given on (local) vector fields X, Y by

$$
N_{J}(X, Y):=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y]
$$

Kähler Manifolds

Definition 65: Let (M, J) be an almost complex manifold. The Nijenhuis-Tensor, N_{J} is the (1,2)-tensor given on (local) vector fields X, Y by

$$
N_{J}(X, Y):=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y]
$$

Remark: (M, J) is a complex manifold, i.e. M admits an atlas such that the (complex components) of the transition functions are holomorphic in all complex variables such that J corresponds to multiplication by $\mathrm{i}=\sqrt{-1}$ if and only if $N_{J} \equiv 0$ (very hard).

Kähler Manifolds

Definition 65: Let (M, J) be an almost complex manifold. The Nijenhuis-Tensor, N_{J} is the (1,2)-tensor given on (local) vector fields X, Y by

$$
N_{J}(X, Y):=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y]
$$

Remark: (M, J) is a complex manifold, i.e. M admits an atlas such that the (complex components) of the transition functions are holomorphic in all complex variables such that J corresponds to multiplication by $\mathrm{i}=\sqrt{-1}$ if and only if $N_{J} \equiv 0$ (very hard).

Proposition 66: Let (M, J, g) be a an almost Hermitian manifold, let ∇ be the Levi-Civita connection of (M, g).

Kähler Manifolds

Definition 65: Let (M, J) be an almost complex manifold. The Nijenhuis-Tensor, N_{J} is the (1,2)-tensor given on (local) vector fields X, Y by

$$
N_{J}(X, Y):=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y]
$$

Remark: (M, J) is a complex manifold, i.e. M admits an atlas such that the (complex components) of the transition functions are holomorphic in all complex variables such that J corresponds to multiplication by $\mathrm{i}=\sqrt{-1}$ if and only if $N_{J} \equiv 0$ (very hard).

Proposition 66: Let (M, J, g) be a an almost Hermitian manifold, let ∇ be the Levi-Civita connection of (M, g).
∇ is a complex connection of $(T M, J)$ if and only if $d \omega=0$ and the Nijenhuis-tensor $N_{J} \equiv 0$

Kähler Manifolds

Proof: (\Rightarrow) Assume ∇ is complex, i.e. $\nabla J=0$. Moreover, since ∇ is metric we have $\nabla g=0$.

Kähler Manifolds

Proof: (\Rightarrow) Assume ∇ is complex, i.e. $\nabla J=0$. Moreover, since ∇ is metric we have $\nabla g=0$.
$\omega(.,)=.-g(., J$.$) , thus \nabla \omega=0 . \quad \nabla \omega=-\underbrace{\nabla g}_{=0}(., J)-.g\left(.,{\underset{O}{0}}_{\nabla J}^{\sim}.\right)$

Kähler Manifolds

Proof: (\Rightarrow) Assume ∇ is complex, i.e. $\nabla J=0$. Moreover, since ∇ is metric we have $\nabla g=0$.
$\omega(.,)=.-g(., J$.$) , thus \nabla \omega=0$.
Cartan's formula (see Problem Set G) for $d \omega$ reads, X, Y, Z recter fild

$$
\begin{aligned}
d \omega(X, Y, Z) & =X(\omega(Y, Z))+Y(\omega(Z, X))+Z(\omega(X, Y)) \\
& -\omega(X,[Y, Z])-\omega(Y,[Z, X])-\omega(Z,[X, Y])
\end{aligned}
$$

Kähler Manifolds

Proof: (\Rightarrow) Assume ∇ is complex, i.e. $\nabla J=0$. Moreover, since ∇ is metric we have $\nabla g=0$.
$\omega(.,)=.-g(., J$.$) , thus \nabla \omega=0$.
Cartan's formula (see Problem Set 6) for $d \omega$ reads

$$
\begin{aligned}
d \omega(X, Y, Z) & =X(\omega(Y, Z))+Y(\omega(Z, X))+Z(\omega(X, Y)) \\
& -\omega(X,[Y, Z])-\omega(Y,[Z, X])-\omega(Z,[X, Y])
\end{aligned}
$$

Since ∇ is torsion free we obtain

$$
\begin{aligned}
& d \omega(X, Y, Z)=X(\omega(Y, Z))+Y(\omega(Z, X))+Z(\omega(X, Y)) \\
& -\omega(X, \underbrace{\nabla_{Y} Z-\nabla_{Z} Y}_{=[\vdash, Z]})-\omega\left(Y, \nabla_{Z} X-\nabla_{X} Z\right)-\omega\left(Z, \nabla_{X} Y-\nabla_{Y} X\right)
\end{aligned}
$$

Kähler Manifolds

Proof: (\Rightarrow) Assume ∇ is complex, i.e. $\nabla J=0$. Moreover, since ∇ is metric we have $\nabla g=0$.
$\omega(.,)=.-g(., J$.$) , thus \nabla \omega=0$.
Cartan's formula (see Problem Set 6) for $d \omega$ reads

$$
\begin{aligned}
d \omega(X, Y, Z) & =X(\omega(Y, Z))+Y(\omega(Z, X))+Z(\omega(X, Y)) \\
& -\omega(X,[Y, Z])-\omega(Y,[Z, X])-\omega(Z,[X, Y])
\end{aligned}
$$

Since ∇ is torsion free we obtain

$$
\begin{aligned}
& d \omega(X, Y, Z)=\underline{X(\omega(Y, Z))+Y(\omega(Z, X))+Z(\omega(X, Y))} \\
& \quad-\omega\left(X, \nabla_{Y} Z-\nabla_{Z} Y\right)-\omega\left(Y, \nabla_{Z} X-\nabla_{X} Z\right)_{2}-\omega\left(Z, \nabla_{X} Y-\nabla_{Y} X\right)
\end{aligned}
$$

Finally, last expression yields

$$
\begin{aligned}
& =\underbrace{x(\omega(y, z)}-\omega\left(\nabla_{x} t, z\right)-\omega\left(1 / \nabla_{x} z\right) \\
& \left(\nabla_{X} \omega\right)(Y, Z)+\left(\nabla_{Y} \omega\right)(Z, X)+\left(\nabla_{Z} \omega\right)(X, Y)=0
\end{aligned}
$$

and vanishes since $\nabla \omega \equiv 0 . \Rightarrow d \omega=0$

Kähler Manifolds

Need to show that $\nabla J \equiv 0$ for ∇ torsion free implies $N_{J} \equiv 0$.

Kähler Manifolds

Need to show that $\nabla J \equiv 0$ for ∇ torsion free implies $N_{J} \equiv 0$.

$$
N_{J}(X, Y)=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y]
$$

Kähler Manifolds

Need to show that $\nabla J \equiv 0$ for ∇ torsion free implies $N_{J} \equiv 0$.

$$
\begin{aligned}
& N_{J}(X, Y)=\underline{[X, Y]}+\underline{J[J X, Y]}+\underline{J[X, J Y]}-\underline{[J X, J Y]} \\
& =\frac{\nabla_{X} Y-\nabla_{Y} X+J\left(\nabla_{J X} Y-\nabla_{Y}(J X)\right)}{+J\left(\nabla_{X}(J Y)-\nabla_{J Y} X\right)-\nabla_{J X}(J Y)+\nabla_{J Y}(J X)} \\
& =\frac{J\left(\left(\nabla_{X} J\right) Y-\left(\nabla_{Y} J\right) X\right)-J\left(\left(\nabla_{J X} J\right) Y-\left(\nabla_{J Y} J\right) X\right)}{=0}
\end{aligned}
$$

Kähler Manifolds

Need to show that $\nabla J \equiv 0$ for ∇ torsion free implies $N_{J} \equiv 0$.

$$
\left.\begin{array}{l}
N_{J}(X, Y)=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y] \\
= \\
=\nabla_{X Y} Y-\nabla_{Y} X+J\left(\nabla_{J X} Y-\nabla_{Y}(J X)\right) \\
=+J\left(\nabla_{X}(J Y)-\nabla_{J Y} X\right)-\nabla_{J X}(J Y)+\nabla_{J Y}(J X) \\
= \\
=0\left(\left(\nabla_{X} J\right) Y\right. \\
=
\end{array}\left(\nabla_{Y} J\right) X\right)-J\left(\left(\nabla_{J X} J\right) Y-\left(\nabla_{J Y} J\right) X\right),
$$

since $\nabla J \equiv 0$ and $(\nabla J) X=\nabla(J X)-J \nabla X$.

Kähler Manifolds

(\Leftarrow) Using Koszul's formula for the Levi-Civita connection ∇

$$
\begin{aligned}
& X, Y, Z \text { vetor filds } \\
& \begin{aligned}
2 g(& \nabla X Y, Z) \\
& =X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
& +g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y)
\end{aligned}
\end{aligned}
$$

Kähler Manifolds

(\Leftarrow) Using Koszul's formula for the Levi-Civita connection ∇

$$
\begin{aligned}
& 2 g\left(\nabla_{X} Y, Z\right) \\
& \quad=X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
& \quad+g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y)
\end{aligned}
$$

one obtains a formula like

$$
2 g\left(\left(\nabla_{X} J\right) Y, Z\right)=(d \omega)(X, Y, Z) \pm g\left(X, N_{J}(Y, Z)\right), \longleftarrow
$$

for all tangent vectors $X, Y, Z \in T_{p} M$ and hence

Kähler Manifolds

(\Leftarrow) Using Koszul's formula for the Levi-Civita connection ∇

$$
\begin{aligned}
& 2 g\left(\nabla_{X} Y, Z\right) \\
& \quad=X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
& \quad+g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y)
\end{aligned}
$$

one obtains a formula like

$$
2 g\left(\left(\nabla_{X} J\right) Y, Z\right)=(d \omega)(X, Y, Z) \pm g\left(X, N_{J}(Y, Z)\right)
$$

for all tangent vectors $X, Y, Z \in T_{p} M$ and hence

$$
\nabla J \equiv 0
$$

