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Complex Vector Bundles

Lemma 61: Let ∇ be a connection on the complex vector bundle
E π→ M. Then the following conditions are equivalent:

(i) ∇J ≡ 0,

(ii) For any smooth f : M → C and section σ : M → E we have

∇(f σ) = df σ + f∇σ

(iii) The connection 1-form w.r.t. any complex trivialization has

the form A ∈ Ω1(U; M(k,C)) with M(k,C) ⊂ M(2k;R)
understood as (real) subalgebra.

Such a connection is called a complex connection.



Complex Vector Bundles
Proof of Lemma 61:



Hermitian Vector Bundles

Definition 62: (i) Let E π→ M be a complex vector bundle. A
Hermitian structure on E is a smooth family {hp}p∈M of
Hermitian products on Ep, i.e. R-bilinear forms which are C-linear
in the first and C-antilinear in the second component, satisfy
hp(w , v) = hp(v ,w) for v ,w ∈ Ep and hp(v , v) > 0 if v 6= 0.

In particular, the real part, g = Re(h), is a euclidean structure and
J is orthogonal w.r.t. g .

(ii) A complex connection ∇ on an Hermitian vector bundle (E , h)
is called Hermitian if it is metric w.r.t. g .

Remark: h is determined by g and, obviously, vice versa. We have

h(., .) := g(., .) + ig(., J .)

(Exercise)
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Hermitian Vector Bundles

Lemma 63: (i) Let (E , h) be a Hermitian vector bundle over a
manifold M. Then the local trivializations Φ : π−1(U)→ U × Ck

can be chosen to be Hermitian isomorphisms.

(ii) The curvature F of a Hermitian connection is skew symmetric
w.r.t. h:

h(Fσ, τ) = −h(σ,Fτ).

(iii) W.r.t. a trivialization described in (i) the connection 1–form
and the curvature satisfy

A`k = −Ak
` and F `k = −F k

` .

Proof: Exercise
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Almost Complex Structures
Definition 64: M smooth manifold of dimension 2n.
(1) A complex structure J on TM is called almost complex
structure on M.

(2) A Hermitian metric on (M, J) is a Riemannian metric g such
that Jp is a isometry at each p ∈ M.
(3) ω(., .) := −g(., J .) ∈ Ω2(M) is called Kähler form of
(M, J , g).

Remark: (a) As seen above, (g , J) determine via h := g−iω a
Hermitian structure on TM.
(b) ω is non-degenerate: at any p ∈ M: the linear map

X ∈ TpM 7→ ω(X , .) ∈ T ∗M

is an isomorphism.
Examples: (1) M = Cn. Then TpCn ∼= Cn and for X ∈ TpCn

Jp(X ) := iX

and the standard Hermitian form 〈., .〉.
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Almost Complex Structures

Examples: (2) Let (Σ, g) be an oriented surface with a
Riemannian metric g . For X ∈ TpΣ we define Jp(X ) by requiring,
that {X ; Jp(X )} is an oriented orthonormal basis of (TpΣ, gp).
Jp(X ) is the counterclockwise rotated X ! g defines a Hermitian
structure on (Σ, J).

J is unchanged if we replace g by λ2g for λ : Σ→ R+ smooth.

There exists an atlas of Σ such that for each chart (U, ϕ,V )

dϕ ◦ i = J ◦ dϕ.

(non-trivial!). The transition maps in such atlas are holomorphic
functions (exercise).

(Σ, J) is called Riemann surface, J its conformal structure. In
Algebraic Geometry, (Σ, J) is called complex curve if ∂Σ = ∅.
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Kähler Manifolds

Definition 65: Let (M, J) be an almost complex manifold. The
Nijenhuis-Tensor, NJ is the (1, 2)-tensor given on (local) vector
fields X ,Y by

NJ(X ,Y ) := [X ,Y ] + J [JX ,Y ] + J [X , JY ]− [JX , JY ].

Remark: (M, J) is a complex manifold, i.e. M admits an atlas
such that the (complex components) of the transition functions are
holomorphic in all complex variables such that J corresponds to
multiplication by i =

√
−1 if and only if NJ ≡ 0 (very hard).

Proposition 66: Let (M, J , g) be a an almost Hermitian
manifold, let ∇ be the Levi-Civita connection of (M, g).

∇ is a complex connection of (TM, J) if and only if dω = 0 and
the Nijenhuis-tensor NJ ≡ 0
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Kähler Manifolds
Proof: (⇒) Assume ∇ is complex, i.e. ∇J = 0. Moreover, since
∇ is metric we have ∇g = 0.

ω(., .) = −g(., J .), thus ∇ω = 0.

Cartan’s formula (see Problem Set 6) for dω reads

dω(X ,Y ,Z ) = X (ω(Y ,Z )) + Y (ω(Z ,X )) + Z (ω(X ,Y ))
− ω(X , [Y ,Z ])− ω(Y , [Z ,X ])− ω(Z , [X ,Y ])

Since ∇ is torsion free we obtain

dω(X ,Y ,Z ) = X (ω(Y ,Z )) + Y (ω(Z ,X )) + Z (ω(X ,Y ))
− ω(X ,∇Y Z −∇Z Y )− ω(Y ,∇Z X −∇X Z )− ω(Z ,∇X Y −∇Y X )

Finally, last expression yields

(∇Xω)(Y ,Z ) + (∇Yω)(Z ,X ) + (∇Zω)(X ,Y ) = 0

and vanishes since ∇ω ≡ 0.
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Kähler Manifolds

Need to show that ∇J ≡ 0 for ∇ torsion free implies NJ ≡ 0.

NJ(X ,Y ) = [X ,Y ] + J [JX ,Y ] + J [X , JY ]− [JX , JY ]

= ∇X Y−∇Y X +J(∇JX Y−∇Y (JX ))
+ J(∇X (JY )−∇JY X )−∇JX (JY )+∇JY (JX )

= J((∇X J)Y − (∇Y J)X )− J((∇JX J)Y − (∇JY J)X )
= 0

since ∇J ≡ 0 and (∇J)X = ∇(JX )− J∇X .
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Kähler Manifolds

(⇐) Using Koszul’s formula for the Levi-Civita connection ∇

2g(∇X Y ,Z )
= X (g(Y ,Z )) + Y (g(Z ,X ))− Z (g(X ,Y ))
+ g([X ,Y ],Z )− g([Y ,Z ],X ) + g([Z ,X ],Y )

one obtains a formula like

2g((∇X J)Y ,Z ) = (dω)(X ,Y ,Z )± g(X ,NJ(Y ,Z )),

for all tangent vectors X ,Y ,Z ∈ TpM and hence

∇J ≡ 0.
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