Differential Geometry Il
Principal Fibre Bundles

Klaus Mohnke

June 4, 2020



Frame Bundles

Let E " M be a vector bundle over a manifold M of rank k. A
(local) frame is a k-tupel of sections {01, ...,04} on an open
subset U C M, such that {o1(x), ..., 0k(x)} form a basis of E, for
any x € U.
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Let E " M be a vector bundle over a manifold M of rank k. A
(local) frame is a k-tupel of sections {01, ...,04} on an open
subset U C M, such that {o1(x), ..., 0k(x)} form a basis of E, for
any x € U.

Notice: A local trivialization ® : 771(U) — U x Rk defines a
frame ob U via oi(x) := ®71(x, ¢;) for x € U and the standard
basis {e/}4_; of R¥,

The frame bundle F(E) 5 M of E is given by

F(E) == [T {x} x {(v1, ..., vi) | basis of E}).

xeM
(V}l/"'l(/l’)
and 7(x, £) = x.
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Frame Bundles

F(E) is a fibre bundle with fibre G/(k;R), the trivializations
V= 1(U) — U x Gl(k;R) given by

w((X, (Vla ey Vk))) = (X7g(X’ V))
where g = (gjj) is determined by

k
vi=>_ gjoi(x)
i=1

If E is euclidean, complex or Hermitian one can choose
orthonormal, complex or unitary frames respectivly and can thus
define a corresponding frame bundle whose fibre is diffeomorphic
to a matrix subgroup G which is O(k) or SO(k), GI(k;C) and
U(k), respectively.

Remark: 50(k Q{O ) C GI(k;R) are subgroups and ;2
submanifolds of the open subset Gl(k;R) ¢ M(k;R)= R

U(n) C GI(k;C) C M(k;C) is a submanifold of the open subset
Gl(k;C) C M(k;C), the latter a linear subspace of M(2k;R). The
group operation and the inverse are differentiable maps.



Frame Bundle

Call, the corresponding group the structure group, G, it acts on
each fibre of corresponding frame bundle ]:6(5) from the right

Rg : (x,v) € FG(E) — (x,vg) € FG(E)
where
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Frame Bundle

Call, the corresponding group the structure group, G, it acts on
each fibre of corresponding frame bundle Fg(€) from the right

Rg : (x,v) € FG(E) — (x,vg) € FG(E)

where
k
(vg)i =Y gjvi,
j=1

which satisfies 7((x, v)g) = x = 7((x, v)). An affine, metric,
complex, unitary connection V on E gives rise to a parallel
transport along any curve v in M which is a real, orthogonal,
complex or unitary iromorphism between the fibres over it.



Frame Bundles

Hence, we obtain a lift 5 in F := Fg(E) and a a smooth splitting

— T(X,V)J:G(E) = T(X,v)]:x S T(,)'(7v)f, j:f 77——’6\’)
Abre



Frame Bundles

Hence, we obtain a lift 4 in F := Fg(E) and a a smooth splitting
T F6(E) = Ty Fx & TE N T,
which satisfies

ng(T(I;(’V)]:) - T(l:(’v)g./r (/ f,UC\J

drr/ D Oea & dT(T W F) = TeM & gt o
T “"“’VL‘,\ ) SN )‘,\[

pj: ;7"5.7‘: ?J(X/V) = (X/Vj) Sol, . ~> 0{%

~ - .7 Fy T
T 7 ,Vl ﬁwn/“, A()‘,'\:)- ’("l\l)‘f > 1
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Hence, we obtain a lift 5 in F := Fg(E) and a a smooth splitting
T F6(E) = Ty Fx & TE N T,
which satisfies
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The last condition follows from definition of Fg(E).



Frame Bundles

Hence, we obtain a lift 5 in F := Fg(E) and a a smooth splitting
T F6(E) = Ty Fx & TE N T,
which satisfies
h _ +h
ng(T(X,v)]:) - 7—(x,v)g]j
dr (T W F) = TeM

ng(T(‘;,V)‘FX) - T(‘;(,V)‘FX’

The last condition follows from definition of Fg(E).

Such a splitting on Fg(E) also determines a corresponding affine,
metric, complex or unitary connection on E.
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Lie Groups

Definition 67: JS{A Lie group G is a smooth manifold (without
boundary) with a group structure such that

(g,h)eGxG—ghteG
is a smooth map.

Examples: The matrix subgroups O(n), SO(n), U(n) are Lie
groups.
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Proposition 68: Let G be a Lie group. Then its tangent bundle
is trivialized via

€ G, X € ToG v dgly 7
g ,g()(//(

where L, : G — G, Lg(/t) gh, the left action of G on itself, is
smooth by definition. Denote the corresponding vector field by X.
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Lie Groups
Proposition 68: Let G be a Lie group. Then its tangent bundle
is trivialized via

g€ G, XEToGrs dglg(X)

where Lg : G — G, Lg(H) = gh, the left action of G on itself, is
smo~oth by definition. Denote the corresponding vector field by X.
(i) X is left-invariant, i.e.

dLg(X) =X
for all g € G.
(i) By o
X, Y €TeG [X,Y]:=[X,Y]e € TeG
we define a bi-linear map. It satisfies Jacobi identity
(X, Y], Z1+ 1Y, Z], X] +[[Z, X], Y] = 0.

o (ke
TeG is called the Lie algebra of G and denoted by g. (’—‘ ER )



Lie Groups
Proof- (i) We have X £ J

(dLg(X))ﬁ_: dg_thg(@) = dg_thg(deLg_lh[X.))
= de(Lg 0 Ly15)(X) = deLy(X)

2

h-



Lie Groups
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= de(Lg 0 Lg-1)(X) = deLp(X)
= Xp.

(ii) Jacobi identity holds for the Lie bracket on vector fields, and
[.,.] on TG is defined using that on X.
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Lie Groups
Proof: (i) We have

(dLg(X))h = dg-1pLg(Xg-14) = dg-1pLg(deLg-1,X
= de(Lg 0 Lg-1)(X) = deLp(X)
= Xp.

(ii) Jacobi identity holds for the Lie bracket on vector fields, and
[.,.] on TG is defined using that on X. Well, we need the identity

e~

X, Y]=[X,Y]:

But o o
(X, Ylg = deLg([X, Y]) = deLg([X, Y]e)-

Since L, is a diffeomorphism theis is equal to
= [dLg(X), dLg(V)]e = [X, V]e

since X, Y are left-invariant. O
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over a manifold M is fibre bundle P 5 M, together with a smooth
right G-action which preserves the fibres and the trivializations

® : 77 1(U) — U x G can be chosen so that for all x € U, h € G,
d~1(x, hg) = 7 (x, h)g



Principal Fibre Bundles

Definition 69: Let G be a Lie group. A principal G—bundle
over a manifold M is fibre bundle P 5 M together with a smooth
right G-action which preserves the fibres and the trivializations
® : 77 1(U) — U x G can be chosen so that for all x € U, h € G,
®~1(x, hg) = ¢ 1(x, h)g

y \5T)e

Remark: A smooth right G-action on a manifold P is a smooth
map p: P x G — P such that with pg : P — P,

peg(p) = p(p,g) =: pg for all g,h € G

Hg © Kh = Hhg



Principal Fibre Bundles

Definition 69: Let G be a Lie group. A principal G—bundle
over a manifold M is fibre bundle P 5 M together with a smooth
right G-action which preserves the fibres and the trivializations

® : 77 1(U) — U x G can be chosen so that for all x € U, h € G,
d~1(x, hg) = 7 (x, h)g

Remark: A smooth right G-action on a manifold P is a smooth
map p: P x G — P such that with pg : P — P,

pg(p) = p(p,g) =: pg forall g,h€ G
lig © fih = fipg

Examples: (i) The frame bundles of vector bundles (real, complex,
euclidean, oriented or unitary) are principal fibre bundles with the
group G being provided by the structure group.



Principal Fibre Bundles

Definition 69: Let G be a Lie group. A principal G—bundle
over a manifold M is fibre bundle P 5 M together with a smooth
right G-action which preserves the fibres and the trivializations

® : 77 1(U) — U x G can be chosen so that for all x € U, h € G,
d~1(x, hg) = 7 (x, h)g

Remark: A smooth right G-action on a manifold P is a smooth
map p: P x G — P such that with pg : P — P,

pg(p) = p(p,g) =: pg forall g,h€ G
Hg © Kh = Hhg

Examples: (i) The frame bundles of vector bundles (real, complex,
euclidean, oriented or unitary) are principal fibre bundles with the
group G being provided by the structure group.

3
(ii) The Hopf fibration is a principal fibre bundle with S>an?
G =S'=U(1) = SO(2).
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Definition 70: Let G be a Lie group. A connection on a principal
G-bundle P 5 M is a smooth family {TF’,’P}pep of subspaces of
T, P such that:

(i) dpﬂ]-,—php ; T,;’P — Tx(pyM is an isomorphism,
(ii) The family is G—invariant: d,ug(T,fP) = ngP.
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Connections
Definition 70: Let G be a Lie group. A connection on a principal
G-bundle P 5 M is a smooth family {TgP}pep of subspaces of
T, P such that:

(i) dpmt|73p : THP — Tr(p)M is an isomorphism,
ii) The family is G=invariant: dyug(T"P) = Th p J
y peg( Ty

Remark: From (i) follows that T,P = TIfP ® Ty Y(w(p)) is a
splitting. Equivalently, {4, : T,P — Tpom X (7(p))}pep is a
smooth family of projections such that Tlﬁ’P = Kerﬂ\,’,.
depi(p,.) : g = Tpm1(m(p)) is an isomorphism and we define

Ap = dep(p,.) T oAy TP — g I%YA

L &
Condition (ii) translates to S '{%
M '°/J Af’ @‘7) .
’ Torg TPfa Ty P Ao

where a, : G — G, ag(h) = ghg™!is the conjugatlon %E y :%’/f J/,}
Adg := deag : g — g the adjoint representation of G.






Associated Bundles

A group homomorphism p: G — Aut(V) for a K—vector space V
is called a K—representation of G. Let P 28 M be a principal
G-bundle. The associated vector bundle ’Px\//( " oa ﬁ,uo/.lmjr
Z =? G- achAlonn
PxpV::<P><V/r\>$I\/I e by €

where (p,v) ~ (pg,p(g t)v) forallpe P,ve V,g € G and
m([p, v]) :== 7p(p).



Associated Bundles

A group homomorphism p: G — Aut(V) for a K—vector space V
is called a K—representation of G. Let P 28 M be a principal
G—bundle. The associated vector bundle

Px,V:=PxV/~5% M

where (p,v) ~ (pg,p(g t)v) forallpe P,ve V,g € G and
m([p, v]) :== 7p(p).

If V is euclidean, Hermitian or carries a (Lie) algebra structure and
p(g) preserves it, then so does P x, V. (Exercise)
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We denote by g := P X pq g the associated Lie algebra bundle.

We define Q%(M; g) to consist of smooth sections of A*(M) ® g.
We have K)P;_JMT“-O’VX&_CJ

Qk(M'g) = {a € Qk(’Dvg) | aP|TP7T_1(7T(p)) = O)Adg O Qpg = aP}



Covariant Exterior Derivative

We denote by g := P X pq g the associated Lie algebra bundle.

We define Q%(M; g) to consist of smooth sections of A*(M) ® g.
We have

Q (M; g) ={a € Q“(P,8) | aplTyr-1(n(p)) = 0, Adg 0 apg = ap} &—
=) 5?,__} o’ =0 .y }(Fi

For a connection A we define the associated covariant exterior

derivative D4 : Q%(M; g) — Q**1(M; g) by

Daw := dw + [A, w]

Exercise: Show that Daw € Q*T1(M; g).



Curvature
The space of connections/C(P)/is an affine space over Q'(M, g).

—~

NYe ] AP(XM,):X/ /1(;( =) /A/A) (X,)=0
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Curvature
The space of connections C(P) is an affine space over Q'(M, g).

Definition 71: Let A € C(P) be a connection. The curvature of
A is the 2-form F € Q?(P, g) given by

F=dA+ %[A, A.

Lemma 72: (i) F vanishes on tangent vectors tangent to the

fibre, i.e. y
F(X,.)=0

for all X € g. In particular, F € Q*(M; g).

(ii) 2nd Bianchi identity: DaFa = 0.

(iii) Let X, Y € T,M and X", Y" two horizontal vector fields on P
in a neighbourhood of p € 7~ 1(x) with d,m(X") = X and
dpm(Y") =Y. Then
— & MM r
Fa(X,Y), = X" Y",~ (% FJ @ ity
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