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Connections on Principal Fibre Bundles
Definition 70: Let G be a Lie group. A connection on a principal
G-bundle P 5 M is a smooth family {TF’,’P}pep of subspaces of
T, P such that:

(i) dpﬂ]-,—php ; T,;’P — Tx(pyM is an isomorphism, \
(i) The family is G—invariant: dug(T2P) = T P.

Remark: From (i) followsL that T,P = TIfP ® Ty Y(w(p)) is a
splitting. Equivalently, {A, : T,P — Tpﬁ_l(w(p))}fep is a

smooth family of projections such that Tlﬁ’P = KerA,.

depi(p,.) : g = Tpm(m(p)) is an isomorphism and we define
Ap = dep(p,.) T oAy TP — g
Condition (ii) translates to
Adg-10A = pzA <_J
where a, : G — G, ag(h) = ghg™! is the conjugation,
Adg := deag : g — g the adjoint representation of G.
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Covariant Exterior Derivative

We denote by g := P X pq g the associated Lie algebra bundle.

We define Q%(M; g) to consist of smooth sections of A*(M) ® g.
We have M Xeq O(PL;(’/_),O

QX (M; g) = {o € Q“(P, ) | aplrr(r(p)) = 0, Adg 0 arpg = ap}

For a connection A we define the associated covariant exterior
derivative D4 : Q%(M; g) — Q**1(M; g) by

Daw := dw + [A, w]

Exercise: Show that Daw € Q*T1(M; g).
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Curvature
The space of connections C(P) is an affine space over Q'(M, g).

Definition 71: Let A € C(P) be a connection. The curvature of
A is the 2-form F, € Q?(P, g) given by

1
Fi=dA+ S[A AL

Lemma 72: (i) F vanishes on tangent vectors tangent to the

fibre, i.e. y
R(X,.)=0

for all X € g. In particular, F € Q*(M; g).

(ii) 2nd Bianchi identity: DaFa = 0.

(iii) Let X, Y € T,M and X", Y" two horizontal vector fields on P
in a neighbourhood of p € 7~ 1(x) with d,m(X") = X and
dpm(Y") =Y. Then
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Relation to Vector Bundles
Let G be a Lie group, P = M be a principal G-bundle and A be a
connection on P. Let p: G — Aut(V) be a finite-dimensional
representation of G on a K-vector space V (K =R, C).

Then A induces a connection V = VA on the associated bundle
E = P x, V as follows: A smooth section o : U — E is uniquely
determined by & : 7~ 1(U) — V such that 5(pg) = p(g~1)&(p).
Then

Daé = d& + p.(A)(5) € QY(P; V)

vanishes on vertical tangent vectors and descends to
Vo € QY(M; E).

px = dep: g = TeG — End(V) is an morphism of Lie algebras -
the representation of g induced by p.

The curvature of V is given by

FV = p.(Fa).



The natural projection 7 : P x V — E = P x, V to the
G—quotient is smooth.



The natural projection 7 : P x V — E = P x, V to the
G—quotient is smooth. We have

ThJE = doun(TIP) )

for the connection on P and its induced connection on E.



“od A Lirows 12, /l'/)
o 2 Al aA L A WA (A

| =0

= (4] Ch aR0)) 4 (A, A5 (7, 0440)
(adhy= - (HA) AT A

- Z&A (AL AN (4, ?&[Acif?z\&ﬁ

)< Th= Al M Ay AY)AA)('\

=0



The Quaternionic Hopf Bundle



o



