Differential Geometry II

Principal Fibre Bundles II
Connections and Curvature
Klaus Mohnke

June 9, 2020

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:
(i) $\left.d_{p} \pi\right|_{T_{p}^{h} P}: T_{p}^{h} P \rightarrow T_{\pi(p)} M$ is an isomorphism,

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:
(i) $\left.d_{p} \pi\right|_{T_{p}^{h} P}: T_{p}^{h} P \rightarrow T_{\pi(p)} M$ is an isomorphism,
(ii) The family is G-invariant: $d \mu_{g}\left(T_{p}^{h} P\right)=T_{p g}^{h} P$.

$$
\mu_{g}: P \rightarrow P \quad \mu_{\delta}(p)=\mu(P, \delta)
$$

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:
(i) $\left.d_{p} \pi\right|_{T_{p}^{h} P}: T_{p}^{h} P \rightarrow T_{\pi(p)} M$ is an isomorphism,
(ii) The family is G-invariant: $d \mu_{g}\left(T_{p}^{h} P\right)=T_{p g}^{h} P$.

Remark: From (i) follows that $T_{p} P=T_{p}^{h} P \oplus T_{p} \pi^{-1}(\pi(p))$ is a splitting.

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:
(i) $\left.d_{p} \pi\right|_{T_{p}^{h} P}: T_{p}^{h} P \rightarrow T_{\pi(p)} M$ is an isomorphism,
(ii) The family is G-invariant: $d \mu_{g}\left(T_{p}^{h} P\right)=T_{p g}^{h} P$.

Remark: From (i) follows that $T_{p} P=T_{p}^{h} P \oplus T_{p} \pi^{-1}(\pi(p))$ is a splitting. Equivalently, $\left\{\tilde{A}_{p}: T_{p} P \rightarrow T_{p} \pi^{-1}(\pi(p))\right\}_{p \in P}$ is a smooth family of projections such that $T_{p}^{h} P=\operatorname{Ker} \tilde{A}_{p}$.

$$
\Rightarrow \tilde{A}_{p j} d \mu j=d_{\mu j} \cdot \tilde{A}_{p}
$$

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:
(i) $\left.d_{p} \pi\right|_{T_{p}^{h} P}: T_{p}^{h} P \rightarrow T_{\pi(p)} M$ is an isomorphism,
(ii) The family is G-invariant: $d \mu_{g}\left(T_{p}^{h} P\right)=T_{p g}^{h} P$.

Remark: From (i) follows that $T_{p} P=T_{p}^{h} P \oplus T_{p} \pi^{-1}(\pi(p))$ is a splitting. Equivalently, $\left\{\tilde{A}_{p}: T_{p} P \rightarrow T_{p} \pi^{-1}(\pi(p))\right\}_{p \in P}$ is a smooth family of projections such that $T_{p}^{h} P=\operatorname{Ker} \tilde{A}_{p}$.
$d_{e} \mu(p,):. \underline{g} \rightarrow T_{p} \pi^{-1}(\pi(p))$ is an isomorphism and we define

$$
A_{p}:=d_{e} \mu(p, .)^{-1} \circ \tilde{A}_{p}: T_{p} P \rightarrow \underline{g}=T_{e} G
$$

Connections on Principal Fibre Bundles

Definition 70: Let G be a Lie group. A connection on a principal G-bundle $P \xrightarrow{\pi} M$ is a smooth family $\left\{T_{p}^{h} P\right\}_{p \in P}$ of subspaces of $T_{p} P$ such that:
(i) $\left.d_{p} \pi\right|_{T_{p}^{h} P}: T_{p}^{h} P \rightarrow T_{\pi(p)} M$ is an isomorphism, (ii) The family is G-invariant: $d \mu_{g}\left(T_{p}^{h} P\right)=T_{p g}^{h} P$.

Remark: From (i) follows that $T_{p} P=T_{p}^{h} P \oplus T_{p} \pi^{-1}(\pi(p))$ is a splitting. Equivalently, $\left\{\tilde{A}_{p}: T_{p} P \rightarrow T_{p} \pi^{-1}(\pi(p))\right\}_{p \in P}$ is a smooth family of projections such that $T_{p}^{h} P=\operatorname{Ker} \tilde{A}_{p}$.
$d_{e} \mu(p,):. \underline{g} \rightarrow T_{p} \pi^{-1}(\pi(p))$ is an isomorphism and we define

$$
A_{p}:=d_{e} \mu(p, .)^{-1} \circ \tilde{A}_{p}: T_{p} P \rightarrow \underline{g}
$$

Condition (ii) translates to

$$
\operatorname{Ad}_{g^{-1}} \circ A=\mu_{g}^{*} A
$$

where $\alpha_{g}: G \rightarrow G, \alpha_{g}(h)=g h g^{-1}$ is the conjugation, $\operatorname{Ad}_{g}:=d_{e} \alpha_{g}: \underline{g} \rightarrow \underline{g}$ the adjoint representation of G.
$\tilde{A}_{p} \cdot T_{p} p \rightarrow T_{p} P_{x} \quad x=\pi(p), P_{x}=\pi^{-1}(x)$ hínar, $\widetilde{A}_{p}^{2}=0$ projection $t_{p} \upharpoonright_{j}\left(\operatorname{Kor} \tilde{A}_{r}\right)=\operatorname{Kur} \tilde{A}_{\text {やg }} \quad\left(b_{y}(i i)\right)$

$$
\operatorname{Kir} \tilde{A}_{p}=\left\{v_{1}, \ldots, v_{m}\right\}, J_{m} \bar{A}_{p}=\left\langle w_{1},\right.
$$

$$
\text { bave } \widetilde{v}_{j}=A_{\mu}\left(v_{j}\right), \widetilde{w}_{j}=A_{\mu_{j}}\left(\omega_{j}\right)
$$

$A_{r j} \tilde{\nu}_{j}=0 \quad b_{j}(i i) \quad \tilde{A}_{p}\left(\omega_{j}\right)=\omega_{j} \quad \tilde{A}_{p} p_{j}$.

$$
\Rightarrow A_{p_{j}} \cdot A_{r_{j}}\left(v_{i}\right)=0=A_{r_{j}} \cdot A_{p}\left(v_{i}\right)
$$

$$
\begin{aligned}
& \& A_{r_{j}} A_{j}\left(w_{j}\right)=\alpha_{\mu}\left(w_{j}\right)=A_{\mu \delta} \cdot A_{p}\left(w_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ick } \gamma:(-r, \varepsilon) \rightarrow G \quad \gamma(0)=e, \gamma(0)=x \in T_{e} G
\end{aligned}
$$

$$
\begin{aligned}
& \left.d_{\text {er }}(\phi \delta,)^{-L}\left(d_{j}\left(\bar{X}_{1}\right)\right)=\left(j^{-1} \gamma I\right]=A \alpha_{j} \cdot \rho\right)
\end{aligned}
$$

Covariant Exterior Derivative

We denote by $\underline{\mathbf{g}}:=P \times{ }^{\text {Ad }} \underline{g}$ the associated Lie algebra bundle.

Covariant Exterior Derivative

We denote by $\underline{\mathbf{g}}:=P \times{ }_{\text {Ad }} \underline{g}$ the associated Lie algebra bundle.
We define $\Omega^{k}(M ; \underline{\mathbf{g}})$ to consist of smooth sections of $\Lambda^{k}(M) \otimes \underline{\mathbf{g}}$.

Covariant Exterior Derivative

We denote by $\underline{\mathbf{g}}:=P \times{ }^{\text {Ad }} \underline{g}$ the associated Lie algebra bundle.
We define $\Omega^{k}(M ; \underline{\mathbf{g}})$ to consist of smooth sections of $\Lambda^{k}(M) \otimes \underline{\mathbf{g}}$.
We have $f / X \in G$
$\alpha_{p}(\tilde{x}, \ldots)=1 \bar{x}_{p}^{\alpha_{p}}$ $\Omega^{k}(M ; \underline{\mathbf{g}})=\left\{\alpha \in \Omega^{k}(P, \underline{g})\left|\alpha_{p}\right|_{T_{p} \pi-1(\pi(p))}=0, \operatorname{Ad}_{g} \circ \alpha_{p g}=\alpha_{p}\right\}$

Covariant Exterior Derivative

We denote by $\underline{\mathbf{g}}:=P \times{ }^{\text {Ad }} \underline{g}$ the associated Lie algebra bundle.
We define $\Omega^{k}(M ; \underline{\mathbf{g}})$ to consist of smooth sections of $\Lambda^{k}(M) \otimes \underline{\mathbf{g}}$.
We have $\quad \forall x \in \underline{g} \quad \alpha_{p}\left(\tilde{x}_{,}\right)=0$
$\Omega^{k}(M ; \underline{\mathbf{g}})=\left\{\alpha \in \Omega^{k}(P, \underline{g})\left|\alpha_{p}\right|_{\tau_{p \pi^{-1}(\pi(p))}}=0, \operatorname{Ad}_{g} \circ \alpha_{p g}=\alpha_{p}\right\}$
For a connection A we define the associated covariant exterior derivative $D_{A}: \Omega^{k}(M ; \underline{\mathbf{g}}) \rightarrow \Omega^{k+1}(M ; \mathbf{g})$ by

$$
D_{A} \omega:=d \omega+[A, \omega]
$$

Exercise: Show that $D_{A} \omega \in \Omega^{k+1}(M ; \mathbf{g})$.

Curvature

The space of connections $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M, \underline{\mathbf{g}})$.

Curvature

The space of connections $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M, \underline{\mathbf{g}})$.
Definition 71: Let $A \in \mathcal{C}(P)$ be a connection. The curvature of A is the 2 -form $F_{A} \in \Omega^{2}(P, \underline{g})$ given by

$$
F_{A}=d A+\frac{1}{2}[A, A] .
$$

Curvature

The space of connections $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M, \underline{\mathbf{g}})$.
Definition 71: Let $A \in \mathcal{C}(P)$ be a connection. The curvature of A is the 2 -form $F_{A} \in \Omega^{2}(P, \underline{g})$ given by

$$
F_{A}=d A+\frac{1}{2}[A, A] .
$$

Lemma 72: (i) F_{L} vanishes on tangent vectors tangent to the fibre, i.e.

$$
F(\tilde{X}, .)=0
$$

for all $X \in \underline{g}$. In particular, $F \in \Omega^{2}(M ; \underline{\mathbf{g}})$.

Curvature

The space of connections $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M, \underline{\mathbf{g}})$.
Definition 71: Let $A \in \mathcal{C}(P)$ be a connection. The curvature of A is the 2 -form $F_{\Delta} \in \Omega^{2}(P, \underline{g})$ given by

$$
F_{A}=d A+\frac{1}{2}[A, A]
$$

Lemma 72: (i) F vanishes on tangent vectors tangent to the fibre, i.e.

$$
F_{A}(\tilde{X}, .)=0
$$

for all $X \in \underline{g}$. In particular, $F_{\Lambda} \in \Omega^{2}(M ; \underline{\mathbf{g}})$:

$$
\mu_{g}^{*} F_{A}=A d_{g} \cdot F_{A}!
$$

(ii) 2nd Bianchi identity: $D_{A} F_{A}=0$.

Curvature

The space of connections $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M, \underline{\mathbf{g}})$.
Definition 71: Let $A \in \mathcal{C}(P)$ be a connection. The curvature of A is the 2 -form $F_{A} \in \Omega^{2}(P, \underline{g})$ given by

$$
F_{A}=d A+\frac{1}{2}[A, A]
$$

Lemma 72: (i) F vanishes on tangent vectors tangent to the fibre, i.e.

$$
F_{A}(\tilde{X}, .)=0
$$

for all $X \in \underline{g}$. In particular, $F \in \Omega^{2}(M ; \underline{\mathbf{g}})$.
(ii) 2nd Bianchi identity: $D_{A} F_{A}=0$.
(iii) Let $X, Y \in T_{x} M$ and X^{h}, Y^{h} two horizontal vector fields on P in a neighbourhood of $p \in \pi^{-1}(x)$ with $d_{p} \pi\left(X^{h}\right)=X$ and $d_{p} \pi\left(Y^{h}\right)=Y$. Then

$$
\left.F_{A(X, Y}\right)_{p}=\left[X^{h}, Y^{h}\right]_{p}-[X, Y]_{p}^{h}
$$

$$
\begin{aligned}
& \text { Troof: }(i) I_{T}(\widetilde{X}, r)=0 \quad \forall X \in g \forall Y_{e} T_{r} p \\
& \text { F(} H H=\widetilde{x}(A(r))=0 \text { (extmatstoved. } \\
& \text { fímeld } \\
& \left.\Rightarrow \quad \frac{1}{2}(A(\tilde{x}), A(r))-(A(r), A(\tilde{x}]]\right)=\Delta \\
& A(\tilde{x})=x(\alpha, \text { of } A) \\
& \text { - } Y=\tilde{z}, z \in g \quad \underset{(\tilde{x}, \tilde{z})}{\tilde{r}(A(\tilde{z}))=0 \quad A(\tilde{z}) \equiv t} \\
& (\bar{x}, \bar{z})=\overline{(x, z]} \\
& A=0-0-A(\tilde{[x, z}])+(A(\tilde{y}), A(\hat{z})] \\
& =-(x, z)+(x, z)=0 \quad \text {, for } f \tilde{x}
\end{aligned}
$$

Let φ_{y}^{-1} be flew of \bar{X} an $G(=\exp (t x))$

$$
\begin{aligned}
& \Rightarrow \phi_{\bar{x}}^{t}(p)=p \cdot \varphi_{x}^{t}(e), d \phi_{\bar{x}}^{-t}=d \mu_{y}^{t}(e)
\end{aligned}
$$

$$
\begin{aligned}
& \left.A=\tilde{X}(A(\Gamma))-\frac{\Gamma(A(\tilde{X}))}{\equiv Y_{+}}-A(\Gamma \tilde{X}, \Gamma)\right) \\
& +[A(X), A(\Gamma)]=0 \quad A(r) \equiv 0! \\
& =-A([\tilde{X}, \Gamma])=0 \cdot(D(i)
\end{aligned}
$$

(ii) See below!

Relation to Vector Bundles

Let G be a Lie group, $P \xrightarrow{\pi} M$ be a principal G-bundle and A be a connection on P. Let $\rho: G \rightarrow \operatorname{Aut}(V)$ be a finite-dimensional representation of G on a \mathbb{K}-vector space $V(\mathbb{K}=\mathbb{R}, \mathbb{C})$.

Relation to Vector Bundles

Let G be a Lie group, $P \xrightarrow{\pi} M$ be a principal G-bundle and A be a connection on P. Let $\rho: G \rightarrow \operatorname{Aut}(V)$ be a finite-dimensional representation of G on a \mathbb{K}-vector space $V(\mathbb{K}=\mathbb{R}, \mathbb{C})$.

Then A induces a connection $\nabla=\nabla^{A, \rho}$ on the associated bundle $E=P \times{ }_{\rho} V$ as follows: A smooth section $\sigma: U \rightarrow E$ is uniquely determined by $\tilde{\sigma}: \pi^{-1}(U) \rightarrow V$ such that $\tilde{\sigma}(p g)=\rho\left(g^{-1}\right) \tilde{\sigma}(p)$.

$$
\text { The } \sigma(x):=[p, \tilde{\sigma}(p)] \text { fo } p \in \pi^{-1}(x)
$$

Relation to Vector Bundles

Let G be a Lie group, $P \xrightarrow{\pi} M$ be a principal G-bundle and A be a connection on P. Let $\rho: G \rightarrow \operatorname{Aut}(V)$ be a finite-dimensional representation of G on a \mathbb{K}-vector space $V(\mathbb{K}=\mathbb{R}, \mathbb{C})$.

Then A induces a connection $\nabla=\nabla^{A, \rho}$ on the associated bundle $E=P \times{ }_{\rho} V$ as follows: A smooth section $\sigma: U \rightarrow E$ is uniquely determined by $\tilde{\sigma}: \pi^{-1}(U) \rightarrow V$ such that $\tilde{\sigma}(p g)=\rho\left(g^{-1}\right) \tilde{\sigma}(p)$. Then

$$
D_{A} \tilde{\sigma}:=d \tilde{\sigma}+\rho_{*}(A)(\tilde{\sigma}) \in \Omega^{1}(P ; V)
$$

vanishes on vertical tangent vectors and descends to $\nabla \sigma \in \Omega^{1}(M ; E)$.

Relation to Vector Bundles

Let G be a Lie group, $P \xrightarrow{\pi} M$ be a principal G-bundle and A be a connection on P. Let $\rho: G \rightarrow \operatorname{Aut}(V)$ be a finite-dimensional representation of G on a \mathbb{K}-vector space $V(\mathbb{K}=\mathbb{R}, \mathbb{C})$.

Then A induces a connection $\nabla=\nabla^{A, \rho}$ on the associated bundle $E=P \times{ }_{\rho} V$ as follows: A smooth section $\sigma: U \rightarrow E$ is uniquely determined by $\tilde{\sigma}: \pi^{-1}(U) \rightarrow V$ such that $\tilde{\sigma}(p g)=\rho\left(g^{-1}\right) \tilde{\sigma}(p)$. Then
vanishes on vertical tangent vectors and descends to $\nabla \sigma \in \Omega^{1}(M ; E)$.
$\rho_{*}:=d_{e} \rho: \underline{g}=T_{e} G \rightarrow \operatorname{End}(V)$ is an morphism of Lie algebras the representation of \underline{g} induced by ρ.

Relation to Vector Bundles

Let G be a Lie group, $P \xrightarrow{\pi} M$ be a principal G-bundle and A be a connection on P. Let $\rho: G \rightarrow \operatorname{Aut}(V)$ be a finite-dimensional representation of G on a \mathbb{K}-vector space $V(\mathbb{K}=\mathbb{R}, \mathbb{C})$.

Then A induces a connection $\nabla=\nabla^{A, \rho}$ on the associated bundle $E=P \times{ }_{\rho} V$ as follows: A smooth section $\sigma: U \rightarrow E$ is uniquely determined by $\tilde{\sigma}: \pi^{-1}(U) \rightarrow V$ such that $\tilde{\sigma}(p g)=\rho\left(g^{-1}\right) \tilde{\sigma}(p)$. Then

$$
D_{A} \tilde{\sigma}:=d \tilde{\sigma}+\rho_{*}(A)(\tilde{\sigma}) \in \Omega^{1}(P ; V)
$$

vanishes on vertical tangent vectors and descends to $\nabla \sigma \in \Omega^{1}(M ; E)$.
$\rho_{*}:=d_{e} \rho: \underline{g}=T_{e} G \rightarrow \operatorname{End}(V)$ is an morphism of Lie algebras the representation of \underline{g} induced by ρ.

The curvature of ∇ is given by

$$
F^{\nabla}=\rho_{*}\left(F_{A}\right)
$$

The natural projection $\pi: P \times V \rightarrow E=P \times{ }_{\rho} V$ to the G-quotient is smooth.

The natural projection $\pi: P \times V \rightarrow E=P \times{ }_{\rho} V$ to the G-quotient is smooth. We have

$$
T_{[p, v]}^{h} E=d_{p, v} \pi\left(T_{p}^{h} P\right)
$$

for the connection on P and its induced connection on E.

Porf of Limna 72 (ii)

$$
\begin{aligned}
& D_{A} F_{A} \stackrel{D d}{=} \underbrace{d\left(d A+\frac{1}{2}(A, A)\right)+C A,\left(d A++_{2}^{1}(A A)\right]}_{=0} \\
& =\frac{1}{2}((A A, A)-(A, d A))+(A, d A)+\frac{1}{2}(A,(A, A)] \\
& (A, d A)=-(d A, A) \quad A=\sum A_{i} d x^{i}
\end{aligned}
$$

$$
\begin{aligned}
& =0
\end{aligned}
$$

The Quaternionic Hopf Bundle

