Differential Geometry II
 Characteristic Classes

Klaus Mohnke

June 11, 2020

The Quaternionic Hopf Bundle

Let

$$
\begin{aligned}
S^{7}:=\{A & \left.\in M(2 ; \mathbb{C}) \mid \operatorname{Trace}\left(\bar{A}^{T} A\right)=\stackrel{1}{2}\right\} \subset M(2 ; \mathbb{C}) \cong \mathbb{C}^{4} . \\
A & =\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \quad \operatorname{Trace}\left(\bar{A}^{\top} A\right)=\left|a_{1}\right|^{2}+\left|a_{2}\right|_{1}^{2}\left|a_{3}\right|^{2}+\left|a_{4}\right|^{2}
\end{aligned}
$$

The Quaternionic Hopf Bundle

Let

$$
S^{7}:=\left\{A \in M(2 ; \mathbb{C}) \mid \operatorname{Trace}\left(\bar{A}^{T} A\right)=2\right\} \subset M(2 ; \mathbb{C}) \cong \mathbb{C}^{4}
$$

The Lie group $S U(\underset{2}{2}):=\left\{g \in M(2 ; \mathbb{C}) \mid \bar{g}^{T} g=\mathbf{E}_{2}\right.$, get $\left.g=1\right\}$ is acting on it (from the right) via $A \mapsto A g$ and

$$
\begin{aligned}
& \text { nd } \operatorname{Trace}\left(\overline{A g}^{\top} A g\right) \\
& =\operatorname{Trace}\left(\bar{g}^{-} \bar{A}^{\top} A g\right)=\operatorname{Tan} \\
& =\operatorname{Trace}\left(A^{\top} A\right)=1 .
\end{aligned}
$$

$$
S^{7} / S U(2) \cong S^{4}=\operatorname{Trace}\left(\bar{g}_{-\top}^{-} A^{\top} A g\right)=\operatorname{Trace}\left(g^{\left.-1-A^{\top} A g\right)}\right.
$$

are diffeomorphic.
Proof: $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right) \in S^{7} \exists g \in S h(2): a_{1} \in R, a_{2}=0$.
wog. $\left(a_{1}, a_{2}\right) \neq(0,0) \quad \operatorname{Ltt}(a, b):=\frac{1}{\sqrt{\left|a_{1}\right|^{2}+\left.\varepsilon_{2}\right|^{2}}}\left(a_{1}, a_{2}\right) \quad|a|^{2}+|b|^{2}=1$.

$$
\begin{aligned}
& g!=\left(\begin{array}{cc}
\bar{a} & -b \\
\bar{b} & a
\end{array}\right) \quad \bar{g}^{\top} g=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\left(\begin{array}{cc}
\bar{a} & -b \\
\bar{b} & a
\end{array}\right)=\mathbb{E}_{2}
\end{aligned}
$$

The Quaternionic Hopf Bundle

Let

$$
S^{7}:=\left\{A \in M(2 ; \mathbb{C}) \mid \operatorname{Trace}\left(\bar{A}^{\top} A\right)=2\right\} \subset M(2 ; \mathbb{C}) \cong \mathbb{C}^{4}
$$

The Lie group $S U(2):=\left\{g \in M(2 ; \mathbb{C}) \mid \bar{g}^{\top} g=\mathbf{E}_{2}\right.$, $\left.\operatorname{det} g=1\right\}$ is acting on it (from the right) via $A \mapsto A g$ and

$$
S^{7} / S U(2) \cong S^{4}
$$

are diffeomorphic.
The quotient map $S^{7} \xrightarrow{\pi} S^{4}$ is a principal $S U(2)$-bundle.
(Exercise)
Remark: This would be true for any free action of a compact

The Quaternionic Hopf Bundle

Let

$$
S^{7}:=\left\{A \in M(2 ; \mathbb{C}) \mid \operatorname{Trace}\left(\bar{A}^{\top} A\right)=2\right\} \subset M(2 ; \mathbb{C}) \cong \mathbb{C}^{4}
$$

The Lie group $S U(2):=\left\{g \in M(2 ; \mathbb{C}) \mid \bar{g}^{\top} g=\mathbf{E}_{2}\right.$, $\left.\operatorname{det} g=1\right\}$ is acting on it (from the right) via $A \mapsto A g$ and

$$
S^{7} / S U(2) \cong S^{4}
$$

are diffeomorphic.
The quotient map $S^{7} \xrightarrow{\pi} S^{4}$ is a principal $S U(2)$-bundle. (Exercise)
$T_{p}^{h} S^{7}:=\left(T_{p} \pi^{-1}([p])\right)^{\perp}$ defines a connection of the principal SU(2)-bundle. (Exercise)

The Quaternionic Hopf Bundle

Let

$$
S^{7}:=\left\{A \in M(2 ; \mathbb{C}) \mid \operatorname{Trace}\left(\bar{A}^{\top} A\right)=2\right\} \subset M(2 ; \mathbb{C}) \cong \mathbb{C}^{4}
$$

The Lie group $S U(2):=\left\{g \in M(2 ; \mathbb{C}) \mid \bar{g}^{\top} g=\mathbf{E}_{2}\right.$, $\left.\operatorname{det} g=1\right\}$ is acting on it (from the right) via $A \mapsto A g$ and

$$
S^{7} / S U(2) \cong S^{4}
$$

are diffeomorphic.
The quotient map $S^{7} \xrightarrow{\pi} S^{4}$ is a principal $S U(2)$-bundle. (Exercise)
$T_{p}^{h} S^{7}:=\left(T_{p} \pi^{-1}([p])\right)^{\perp}$ defines a connection of the principal SU(2)-bundle. (Exercise)

Chern Classes: Axioms

Definition 73: The (rational) Chern classes are a sequence $\left(c_{k}\right)_{k=0}^{\infty}$ which assign to each complex vector bundle $E \xrightarrow{\pi} M$ over a smooth manifold an element $C_{k}(E) \in H_{D R}^{2 k}(M)$ with $c_{0}(E)=1$ for all E, which satisfies the following axioms:

Chern Classes: Axioms

Definition 73: The (rational) Chern classes are a sequence $\left(c_{k}\right)_{k=0}^{\infty}$ which assign to each complex vector bundle $E \xrightarrow{\pi} M$ over a smooth manifold an element $C_{k}(E) \in H_{D R}^{2 k}(M)$ with $c_{0}(E)=1$ for all E, which satisfies the following axioms:

Chern Classes: Axioms

Definition 73: The (rational) Chern classes are a sequence $\left(c_{k}\right)_{k=0}^{\infty}$ which assign to each complex vector bundle $E \xrightarrow{\pi} M$ over a smooth manifold an element $C_{k}(E) \in H_{D R}^{2 k}(M)$ with $c_{0}(E)=1$ for all E, which satisfies the following axioms:
(ii) For all\& smooth $f: \stackrel{\forall}{M} \xrightarrow{\boldsymbol{E}} N \mathbb{N}: c_{k}\left(f^{*} E\right)=f^{*} c_{k}(E)$

Chern Classes: Axioms

Definition 73: The (rational) Chern classes are a sequence $\left(c_{k}\right)_{k=0}^{\infty}$ which assign to each complex vector bundle $E \xrightarrow{\pi} M$ over a smooth manifold an element $C_{k}(E) \in H_{D R}^{2 k}(M)$ with $c_{0}(E)=1$ for all E, which satisfies the following axioms:
(ii) For alle smooth $f: M \rightarrow N: c_{k}\left(f^{*} E\right)=f^{*} c_{k}(E)$
(ii) $c_{k}(E \oplus F)=\sum_{j=0}^{k} c_{j}(E) \wedge c_{k-j}(F)$.

Chern Classes: Axioms

Definition 73: The (rational) Cher classes are a sequence $\left(c_{k}\right)_{k=0}^{\infty}$ which assign to each complex vector bundle $E \xrightarrow{\pi} M$ over a smooth manifold an element $C_{k}(E) \in H_{D R}^{2 k}(M)$ with $c_{0}(E)=1$ for all E, which satisfies the following axioms:
(ii) For alle smooth $f: M \rightarrow N: c_{k}\left(f^{*} E\right)=f^{*} c_{k}(E)$
(ii) $c_{k}(E \oplus F)=\sum_{j=0}^{k} c_{j}(E) \wedge c_{k-j}(F)$.
(iii) For the tautological bundle $H \xrightarrow{\pi} \mathbb{C} P^{1}$ we have

$$
C_{0}(E)=1
$$

$c=1+c_{1}+c_{2}+c_{3}+\ldots$

$$
c(\stackrel{H}{E})=1-[\omega] \text { meany }
$$

where $\omega \in \Omega^{2}\left(\mathbb{C} P^{1}\right)$ with

$$
C_{1}(E)-[\omega]
$$

$$
C_{k}(E)=0 \quad k k>1
$$

$$
\int_{\mathbb{C} P^{1}} \omega=1
$$

$$
\text { (iii) }+ \text { (iv) } \Leftrightarrow \text {) }
$$

$\forall H^{I I} \rightarrow \operatorname{lo}^{k}$ Santrojicalide

$$
c(H)=1-[\omega]
$$

(iv) For $k>r k_{\mathbb{C}}(E)$ the class vanishes: $c_{k}(E)=0 . \begin{aligned} & c(H)=1-[\omega] \\ & \omega \omega_{0} \omega \text { Fubimi-Sury fam }\end{aligned}$

Chern Classes: Axioms

Theorem 74: (1) The Chern classes exist and are uniquely defined by the axioms.

Chern Classes: Axioms

Theorem 74: (1) The Chern classes exist and are uniquely defined by the axioms.
(2) c_{k} are integer valued. In particular for any complex bundle $E \xrightarrow{\pi} M$ over a closed, oriented manifold M of dimension $\operatorname{dim} M=2 k$ we have

$$
\int_{M} c_{k}(E) \in \mathbb{Z}
$$

Chern Classes: Axioms

Theorem 74: (1) The Chern classes exist and are uniquely defined by the axioms.
(2) c_{k} are integer valued. In particular for any complex bundle $E \xrightarrow{\pi} M$ over a closed, oriented manifold M of dimension $\operatorname{dim} M=2 k$ we have

$$
\int_{M} c_{k}(E) \in \mathbb{Z}
$$

The Proof is omitted since it should be rather discussed in the context of a lecture on Algebraic Topology or the Atiyah-Singer index theorem.

The Chern-Weil Construction

Let $(E, h) \xrightarrow{\pi} M$ be a complex vector bundle over a smooth manifold, ∇ a complex connection. Then we define the
Chern-Weil forms $c_{k}(E, \nabla)$ to be the coefficients

$$
\operatorname{det}(\underbrace{\frac{i t}{2 \pi} F^{\nabla}+\operatorname{id}_{E}}_{E, \Omega^{4}})=1+c_{1}(E, \nabla) t^{t}+c_{2}(E, \nabla))^{2 /}+\ldots
$$

Theorem 75: (1) The Chern forms are real closed forms $c_{k}(E, \nabla) \in \Omega^{2 k}(M ; \mathbb{R})$.

The Chern-Weil Construction

Let $(E, h) \xrightarrow{\pi} M$ be a complex vector bundle over a smooth manifold, ∇ a complex connection. Then we define the
Chern-Weil forms $c_{k}(E, \nabla)$ to be the coefficients

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=1+c_{1}(E, \nabla) t^{2}+c_{2}(E, \nabla) t^{4}+\ldots
$$

Theorem 75: (1) The Chern forms are real closed forms $c_{k}(E, \nabla) \in \Omega^{2 k}(M ; \mathbb{R})$.
(2) The class $c_{k}(E):=\left[c_{k}(E, \nabla)\right] \in H_{D R}^{2 k}(M ; \mathbb{R})$ does not depend on ∇.

The Chern-Weil Construction

Let $(E, h) \xrightarrow{\pi} M$ be a complex vector bundle over a smooth manifold, ∇ a complex connection. Then we define the
Chern-Weil forms $c_{k}(E, \nabla)$ to be the coefficients

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=1+c_{1}(E, \nabla) t^{\hat{2}}+c_{2}(E, \nabla) t^{\hat{2}}+\ldots
$$

Theorem 75: (1) The Chern forms are real closed forms $c_{k}(E, \nabla) \in \Omega^{2 k}(M ; \mathbb{R})$.
(2) The class $c_{k}(E):=\left[c_{k}(E, \nabla)\right] \in H_{D R}^{2 k}(M ; \mathbb{R})$ does not depend on ∇.
(3) The sequence c_{k} are the (rational) Chern classes, i.e. it satisfies the axioms.

The Chern-Weil Construction

Computation of the first Chern classes:

The Chern-Weil Construction

Computation of the first Chern classes:

$$
c_{1}(E, \nabla)=\frac{\mathrm{i}}{2 \pi} \operatorname{Trace} F^{\nabla}
$$

The Chern-Weil Construction

Computation of the first Chern classes:

$$
c_{1}(E, \nabla)=\frac{\mathrm{i}}{2 \pi} \operatorname{Trace} F^{\nabla} .
$$

and

$$
c_{2}(E, \nabla)=\frac{1}{8 \pi^{2}}\left(\operatorname{Trace}\left(F^{\nabla} \wedge F^{\nabla}\right)-\operatorname{Trace} F^{\nabla} \wedge \operatorname{Trace} F^{\nabla}\right)
$$

The Chern-Weil Construction

Computation of the first Cher classes:

$$
c_{1}(E, \nabla)=\frac{\mathrm{i}}{2 \pi} \operatorname{Trace} F^{\nabla} .
$$

and

$$
c_{2}(E, \nabla)=\frac{1}{8 \pi^{2}}\left(\operatorname{Trace}\left(F^{\nabla} \wedge F^{\nabla}\right)-\operatorname{Trace} F^{\nabla} \wedge \operatorname{Trace} F^{\nabla}\right) \quad(x .
$$

Lemma 76: There is a sequence of homogeneous polynomials $\left(p_{k}\right)$ of degree k with rational coefficients, such that

$$
c_{k}(E, \nabla)=p_{k}\left(s_{1}, \ldots, s_{k}\right) \leftarrow
$$

where

$$
s_{\ell}=\operatorname{Trace}\left(\left(\frac{\mathrm{i}}{2 \pi} F^{\nabla}\right)^{\ell}\right) \quad \stackrel{c^{*}}{\left.\stackrel{0}{k}+\sigma_{k R-11} s_{1} s_{k-1}+a_{11(k-1}\right)^{2} s^{2} s_{k 2}}
$$

where the ℓ-th variable has degree ℓ and $p_{k}(0,0, \ldots, 1) \neq 0$.
\Rightarrow for $(n) \&(2)$ of Therm 75 it in range to show fth for Se!

The Chern-Weil Construction
Lemma 77: We have for $\alpha \in \Omega^{k}(M, \operatorname{End}(E)), \beta_{k+\ell} \in \Omega^{\ell}(M$; End $(E))$ that

$$
d(\operatorname{Trace}(\overbrace{\alpha \wedge \beta}^{\epsilon \Omega^{k+\ell}})=\operatorname{Trace}\left(D \alpha \wedge \beta+(-1)^{k} \alpha \wedge D \beta\right)
$$

D extesicrior cavariant divative in du ad $1 y$ caunction D.
Proof: Let $A \in \Omega^{\prime}(n, M(k, \sigma))$ comestia. 1-fern of P w.r.A. a hivialitition $\bar{\phi}: \pi^{-1}(n) \rightarrow u \times \mathbb{C}^{k}$ ous upn U $\subset M, \quad \alpha, \beta \in \Omega *(M, M(k, C))$

$$
d(\operatorname{Trace}(\alpha, \beta))=\operatorname{Trace}(D(\alpha, \beta))=\operatorname{Trace}\left(D \alpha_{1} \beta+(-)^{k} \alpha / \lambda \beta\right)
$$

need to show $d(\operatorname{Trace}(\gamma))=\operatorname{Trace}(D(\gamma))$ for $\gamma \in \Omega^{l}(M$, nd $(E))$
where $\begin{aligned} A & =\sum A_{i} d x^{i}, \gamma=\sum \gamma I d x^{I} \\ I & =\left\langle 1 \leqslant i_{1}<\ldots<i_{\ell} \leqslant n\right\}\end{aligned} \quad=\operatorname{Trace}\left(\sum_{i, I}^{i, I}\left[A_{i}, \gamma I\right] \quad\right) d x_{i}^{i} d x^{I}$

$$
\begin{aligned}
& I=\left\{1 \leqslant i_{1}<\ldots<i_{l} \leq n\right\} \\
& d x^{I}=d x^{i_{1}} A \ldots n d x ; A_{i, \gamma I} \in M(k, R)=0
\end{aligned}
$$

The Chern-Weil Construction

Applying Lemma 77 inductively we conclude

$$
d\left(s_{\ell}(E, \nabla)\right)=\stackrel{\left(\frac{i}{2 \pi}\right)^{\ell}}{\overbrace{T}} \operatorname{race}(\underbrace{D F^{\nabla}}_{=0} \wedge \ldots \wedge F^{\nabla}+. .+F^{\nabla} \wedge \ldots \wedge \underbrace{D F^{\nabla}}_{=0})=0 \text { Re Bianchi }
$$

The Chern-Weil Construction

Applying Lemma 77 inductively we conclude

$$
d\left(s_{\ell}(E, \nabla)\right)=\operatorname{Trace}\left(D F^{\nabla} \wedge \ldots \wedge F^{\nabla}+\ldots F^{\nabla} \wedge \ldots \wedge D F^{\nabla}\right)=0 . \Rightarrow(1)
$$

Let ∇^{0}, ∇^{1} be two complex connections on E. Then

$$
\nabla^{1}=\nabla^{0}+\alpha
$$

for $\alpha \in \Omega^{1}\left(M ; \operatorname{End}_{\mathbb{C}}(E)\right)$. Denote by $\nabla^{t}=\nabla^{0}+t \alpha$ family of connections $t \in[0,1]$. Then $F^{t}=F^{0}+t D^{0} \alpha+t^{2} / 2[\alpha, \alpha]$.

The Chern-Weil Construction

Applying Lemma 77 inductively we conclude

$$
d\left(s_{\ell}(E, \nabla)\right)=\operatorname{Trace}\left(D F^{\nabla} \wedge \ldots \wedge F^{\nabla}+\ldots F^{\nabla} \wedge \ldots \wedge D F^{\nabla}\right)=0 .
$$

Let ∇^{0}, ∇^{1} be two complex connections on E. Then

$$
\nabla^{1}=\nabla^{0}+\alpha
$$

for $\alpha \in \Omega^{1}(M ; \operatorname{End}(E))$. Denote by $\nabla^{t}=\nabla^{0}+t \alpha$ family of connections $t \in[0,1]$. Then $F^{t}=F^{0}+t D^{0} \alpha+t^{2} / 2[\alpha, \alpha]$.

$$
\frac{d F^{t}}{d t}=D^{0} \alpha+[t \alpha, \alpha]=D^{t} \alpha
$$

The Chern-Weil Construction

Applying Lemma 77 inductively we conclude

$$
d\left(s_{\ell}(E, \nabla)\right)=\operatorname{Trace}\left(D F^{\nabla} \wedge \ldots \wedge F^{\nabla}+\ldots F^{\nabla} \wedge \ldots \wedge D F^{\nabla}\right)=0
$$

Let ∇^{0}, ∇^{1} be two complex connections on E. Then

$$
\nabla^{1}=\nabla^{0}+\alpha
$$

for $\alpha \in \Omega^{1}(M ; \operatorname{End}(E))$. Denote by $\nabla^{t}=\nabla^{0}+t \alpha$ family of connections $t \in[0,1]$. Then $F^{t}=F^{0}+t D^{0} \alpha+t^{2} / 2[\alpha, \alpha]$.

$$
\frac{d F^{t}}{d t}=D^{0} \alpha+[t \alpha, \alpha]=D^{t} \alpha
$$

Hence

$$
\begin{aligned}
& \left.\Omega^{2 \ell}\left(M \xi_{\alpha} \alpha \in\right)\right) \ni \frac{d}{d t} s_{\ell}\left(E, \nabla^{t}\right)=\operatorname{Trace}\left(D^{t} \alpha \wedge F^{t} \ldots \wedge F^{t}+\ldots\right) \\
& =d(\underbrace{\left.\operatorname{Trace}\left(\alpha \wedge F^{t} \wedge \ldots \wedge F^{t}+\ldots\right)\right) .}_{\epsilon \Omega^{2 R^{\prime \prime}}(H, R 1 \text { Suroothey appediy ant }}
\end{aligned}
$$

The Chern-Weil Construction
We obtain

$$
s_{\ell}\left(E, \nabla^{1}\right)-s_{\ell}\left(E, \nabla^{0}\right)=d\left(\int_{0}^{1} \operatorname{Trace}\left(\alpha \wedge F^{t} \wedge \ldots \wedge F^{t}+\ldots\right)\right)^{\frac{d}{L}}
$$

Sh.le mend to then, thet $\left(C_{k}=\left[C_{k}(E, \nabla)\right]\right)$
iner chen clanes of E.
$\left[\begin{array}{l}\text { "elliptic quates" } \\ \mathbb{1} \text {-hinas. }\end{array}\right.$
$D: \Gamma(H, E) \rightarrow \Gamma(B, F)$
is Trahan, ind $(T)=\operatorname{cim}(\hbar D))$
$-\sin (\operatorname{col} x)$
\therefore attunind by charactiotic clemen of $E, \bar{T}, T M_{1}$.

The Chern-Weil Construction

The Chern-Weil Construction

The Chern-Weil Construction

