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The Hopf Bundle
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The Hopf Bundle

Recall

S3 = {A(z1,2) € C? | |z1|* + |n|* =1} c C°.
The Lie group S! = U(1) = {z € C||z| = 1} is acting on it (from
the right) via z — zg. Its quotient is diffeomorphic to
$3/St = CP' = &?
and its quotient map S35 S2 is a principal S*-bundle.
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B? is to be considered with a parametrization
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The Hopf Bundle
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The Hopf Bundle

T)S3 := (TpmY([p]))* defines a connection A of the principal
S'-bundle.

Its curvature is described
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The Hopf Bundle
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The Tautological Bundle

The Hopf bundle is the frame bundle of the tautological line
bundle H = CP1.
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The Tautological Bundle

The Hopf bundle is the frame bundle of the tautological line
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The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms cx(E, V) defined by

ity k
det(27TF +idg) = kzzock(E,V)t

satisfy the axioms for Chern classes.
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The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms cx(E, V) defined by

ity k
det(27TF +idg) = kzzock(E,V)t

satisfy the axioms for Chern classes.

(i) Let f : M — N be a smooth map, E = N a complex vector
bundle. Then the pull-back connection V' is a connection on
F*E " Mand FVY' = f*FV. In particular,
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The Axioms and the Chern-Weil Construction

(ii) Let Ex > M, k = 1,2be two complex vector bundles, V* a
connection on Ex. Then V := (V1,V2)T defines a connection on
E1 @ E> and
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The Axioms and the Chern-Weil Construction

(ii) Let Ex > M, k = 1,2be two complex vector bundles, V* a
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The Axioms and the Chern-Weil Construction

(ii) Let Ex > M, k = 1,2be two complex vector bundles, V* a
connection on Ex. Then V := (V1,V2)T defines a connection on

E1 @ E> and
FV' o
FV =
o FV' )’

it . it 1. it 2.
det(o—FY +idE) = det(5—F" +idg,) Adet(5—F +idg)

hence
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(iii) We computed c1(H) = —w above. The axiom follows with (iv)
(iv) By definition ¢/(E, V) are the coefficients of the
"characteristic polynomial” of the k x k—matrix (in a local
trivialization) 3£ FV with entries in Q?(M, C), where k := rkcE.
Hence, ¢/(E,V) =0 for all £ > k.
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Pontrjagin Classes

Similarly, for a real vector bundle with a connection E,V over a
manifold M we may define 34 € Q%¢(M;R) via

det(tFY +idg) = Y t*Bu(E, V).
k=0
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Pontrjagin Classes

Similarly, for a real vector bundle with a connection E,V over a
manifold M we may define 34 € Q%¢(M;R) via

det(tFY +idg) = Y t*Bu(E, V).
k=0

They are closed and define de Rham classes [8x] € HE%(M; R)
which are independent of V.

Lemma 78: (i) [8x] = 0 for k odd.

(ii) (%’jkﬁzk(E, V) = o(E ®r C,VO).
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For a smooth manifold M one defines the Pontrjagin classes of
M to be

p(M) := p(TM)

fl'hey are also defined axiomatically, integer classes and topological
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Pontrjagin Classes

Definition 79: Let E 5 M be a real vector bundle. Then
pr(E) := ck(E ®r C) € HES(M; R)
are called the Pontrjagin classes of M.

For a smooth manifold M one defines the Pontrjagin classes of
M to be
pi(M) := pi(TM)

They are also defined axiomatically, integer classes and topological
invariants.

They are cobordism invariants.

pk(M) can be defined for topological manifolds, although the
tangent bundle has no meaning.

pk(M) are another theme in the story "Curvature and Topology”!



Hirzebruch's Signature Formula
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Hirzebruch's Signature Formula
Let M be a closed oriented 4k—manifold. Then

(o). 181 € He(M) [ anpeRr
M

is a non-degenerate symmetric bilinear form.

The signature of M, o(M), is the signature of this form. It is a
topological inmvariant.

For a closed, oriented 4—manifold M its signature is
1
o(M) =3 [ pu(m).
M
for a 8—manifold M it is

o) = 5 [ (1pa(M) = pa (M)

In general, for a closed oriented 4k—manifold its signature is
determined by its Pontrjagin classes. The formula involves the
so-called L-genus and was found by Hirzebruch.
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