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The Hopf Bundle
Recall

S3 := {A(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} ⊂ C2.

The Lie group S1 = U(1) = {z ∈ C||z | = 1} is acting on it (from
the right) via z 7→ zg . Its quotient is diffeomorphic to

S3/S1 =: CP1 ∼= S2

and its quotient map S3 π→ S2 is a principal S1-bundle.

Trivializations are described by

(z1, z2) ∈ S3\{(z1, z2 | z1 = 0)} 7→ (z2|z1|
z1

,
z1
|z1|

) ∈ B2(1)\{(−1, 0, )}×

and for the second coordinate likewise.

B2 is to be considered with a parametrization
ϕ : B2 → S2 \ {(−1, 0, 0)}.
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The Hopf Bundle
T h

p S3 := (Tpπ
−1([p]))⊥ defines a connection A of the principal

S1–bundle.

Its curvature is described

ϕ∗FA = 2idxdy
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The Hopf Bundle



The Tautological Bundle

The Hopf bundle is the frame bundle of the tautological line
bundle H π→ CP1.

Equivalently, the line bundle S3 ×id C with id : S1 → S1 ⊂ C is
the tautological line bundle H.

Thus
c1(S3 π→ S2) = c1(H) = ω ∈ Ω2(S2)

with ∫ 2

S
ω = 1.
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The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms ck(E ,∇) defined by

det( it
2πF∇ + idE ) =

∞∑
k=0

ck(E ,∇)tk

satisfy the axioms for Chern classes.

(i) Let f : M → N be a smooth map, E π→ N a complex vector
bundle. Then the pull-back connection ∇f is a connection on
f ∗E π→ M and F∇f = f ∗F∇. In particular,

det( it
2πF∇f + idf ∗E ) = f ∗ det( it

2πF∇ + idE ) =
∞∑

k=0
f ∗ck(E ,∇)tk

and thus
ck(f ∗E ,∇f ) = f ∗ck(E ,∇).
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The Axioms and the Chern-Weil Construction
(ii) Let Ek

π→ M, k = 1, 2be two complex vector bundles, ∇k a
connection on Ek . Then ∇ := (∇1,∇2)T defines a connection on
E1 ⊕ E2 and

F∇ =
(

F∇1 0
0 F∇2

)
,

hence

det( it
2πF∇ + idE ) = det( it

2πF∇1 + idE1) ∧ det( it
2πF∇2 + idE2)

=
∞∑

k=0
tk

k∑
`=0

c`(E1,∇1) ∧ ck−`(E2,∇2)

(iii) We computed c1(H) = −ω above. The axiom follows with (iv)
(iv) By definition c`(E ,∇) are the coefficients of the
”characteristic polynomial” of the k × k–matrix (in a local
trivialization) it

2πF∇ with entries in Ω2(M,C), where k := rkCE .
Hence, c`(E ,∇) = 0 for all ` > k.



The Axioms and the Chern-Weil Construction
(ii) Let Ek

π→ M, k = 1, 2be two complex vector bundles, ∇k a
connection on Ek . Then ∇ := (∇1,∇2)T defines a connection on
E1 ⊕ E2 and

F∇ =
(

F∇1 0
0 F∇2

)
,

hence

det( it
2πF∇ + idE ) = det( it

2πF∇1 + idE1) ∧ det( it
2πF∇2 + idE2)

=
∞∑

k=0
tk

k∑
`=0

c`(E1,∇1) ∧ ck−`(E2,∇2)

(iii) We computed c1(H) = −ω above. The axiom follows with (iv)
(iv) By definition c`(E ,∇) are the coefficients of the
”characteristic polynomial” of the k × k–matrix (in a local
trivialization) it

2πF∇ with entries in Ω2(M,C), where k := rkCE .
Hence, c`(E ,∇) = 0 for all ` > k.



The Axioms and the Chern-Weil Construction
(ii) Let Ek

π→ M, k = 1, 2be two complex vector bundles, ∇k a
connection on Ek . Then ∇ := (∇1,∇2)T defines a connection on
E1 ⊕ E2 and

F∇ =
(

F∇1 0
0 F∇2

)
,

hence

det( it
2πF∇ + idE ) = det( it

2πF∇1 + idE1) ∧ det( it
2πF∇2 + idE2)

=
∞∑

k=0
tk

k∑
`=0

c`(E1,∇1) ∧ ck−`(E2,∇2)

(iii) We computed c1(H) = −ω above. The axiom follows with (iv)
(iv) By definition c`(E ,∇) are the coefficients of the
”characteristic polynomial” of the k × k–matrix (in a local
trivialization) it

2πF∇ with entries in Ω2(M,C), where k := rkCE .
Hence, c`(E ,∇) = 0 for all ` > k.



The Axioms and the Chern-Weil Construction
(ii) Let Ek

π→ M, k = 1, 2be two complex vector bundles, ∇k a
connection on Ek . Then ∇ := (∇1,∇2)T defines a connection on
E1 ⊕ E2 and

F∇ =
(

F∇1 0
0 F∇2

)
,

hence

det( it
2πF∇ + idE ) = det( it

2πF∇1 + idE1) ∧ det( it
2πF∇2 + idE2)

=
∞∑

k=0
tk

k∑
`=0

c`(E1,∇1) ∧ ck−`(E2,∇2)

(iii) We computed c1(H) = −ω above. The axiom follows with (iv)

(iv) By definition c`(E ,∇) are the coefficients of the
”characteristic polynomial” of the k × k–matrix (in a local
trivialization) it

2πF∇ with entries in Ω2(M,C), where k := rkCE .
Hence, c`(E ,∇) = 0 for all ` > k.



The Axioms and the Chern-Weil Construction
(ii) Let Ek

π→ M, k = 1, 2be two complex vector bundles, ∇k a
connection on Ek . Then ∇ := (∇1,∇2)T defines a connection on
E1 ⊕ E2 and

F∇ =
(

F∇1 0
0 F∇2

)
,

hence

det( it
2πF∇ + idE ) = det( it

2πF∇1 + idE1) ∧ det( it
2πF∇2 + idE2)

=
∞∑

k=0
tk

k∑
`=0

c`(E1,∇1) ∧ ck−`(E2,∇2)

(iii) We computed c1(H) = −ω above. The axiom follows with (iv)
(iv) By definition c`(E ,∇) are the coefficients of the
”characteristic polynomial” of the k × k–matrix (in a local
trivialization) it

2πF∇ with entries in Ω2(M,C), where k := rkCE .
Hence, c`(E ,∇) = 0 for all ` > k.





Pontrjagin Classes
Similarly, for a real vector bundle with a connection E ,∇ over a
manifold M we may define βk ∈ Ω2k(M;R) via

det(tF∇ + idE ) =
∞∑

k=0
tkβk(E ,∇).

They are closed and define de Rham classes [βk ] ∈ H2k
DR(M;R)

which are independent of ∇.

Lemma 78: (i) [βk ] = 0 for k odd.

(ii)
( i

2π

)k
β2k(E ,∇) = c2k(E ⊗R C,∇C).
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Pontrjagin Classes
Definition 79: Let E π→ M be a real vector bundle. Then

pk(E ) := c2k(E ⊗R C) ∈ H4k
DR(M;R)

are called the Pontrjagin classes of M.

For a smooth manifold M one defines the Pontrjagin classes of
M to be

pk(M) := pk(TM)

They are also defined axiomatically, integer classes and topological
invariants.

They are cobordism invariants.

pk(M) can be defined for topological manifolds, although the
tangent bundle has no meaning.

pk(M) are another theme in the story ”Curvature and Topology”!
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Hirzebruch’s Signature Formula
Let M be a closed oriented 4k–manifold. Then

[α], [β] ∈ H2k
DR(M) 7→

∫
M
α ∧ β ∈ R

is a non-degenerate symmetric bilinear form.

The signature of M, σ(M), is the signature of this form. It is a
topological inmvariant.

For a closed, oriented 4–manifold M its signature is

σ(M) = 1
3

∫
M

p1(M).

for a 8–manifold M it is

σ(M) = 1
45

∫
M

(7p2(M)− p1(M)2).

In general, for a closed oriented 4k–manifold its signature is
determined by its Pontrjagin classes. The formula involves the
so-called L–genus and was found by Hirzebruch.
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Stiefel-Whitney Classes










