Differential Geometry II
 Characteristic Classes

Klaus Mohnke

June 11, 2020

The Hopf Bundle

Recall

$$
S^{3}:=\left\{\left.A\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \subset \mathbb{C}^{2} .
$$

The Lie group $S^{1}=U(1)=\{z \in \mathbb{C}| | z \mid=1\}$ is acting on it (from the right) via $z \mapsto z g$. Its quotient is diffeomorphic to

$$
S^{3} / S^{1}=: \mathbb{C} P^{1} \cong S^{2}
$$

and its quotient map $S^{3} \xrightarrow{\pi} S^{2}$ is a principal S^{1}-bundle.

The Hopf Bundle

Recall

$$
S^{3}:=\left\{\left.A\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \subset \mathbb{C}^{2}
$$

The Lie group $S^{1}=U(1)=\{z \in \mathbb{C}| | z \mid=1\}$ is acting on it (from the right) via $z \mapsto z g$. Its quotient is diffeomorphic to

$$
S^{3} / S^{1}=: \mathbb{C} P^{1} \cong S^{2}
$$

and its quotient map $S^{3} \xrightarrow{\pi} S^{2}$ is a principal S^{1}-bundle.

$$
\begin{aligned}
& \text { Trivializations are described by } \\
& \pi^{-1}(\mathbb{C P} \backslash\{[0,1\}) \\
& \begin{array}{l}
\left(z_{1}, z_{2}\right) \in \overbrace{S^{3} \backslash\left\{\left(z_{1}, z_{2} \mid z_{1}=0\right)\right.}^{\left(z_{1}, z_{2}\right)}\left(\frac{z_{1}-1}{z_{1} \mid}\right)^{-1}=\left(z_{1} \left\lvert\,, \frac{-z_{2}\left|z_{1}\right|}{z_{1}}\right.\right)
\end{array} \mapsto\left(\frac{z_{2}\left|z_{1}\right|}{z_{1}}, \frac{z_{1}}{\left|z_{1}\right|}\right) \in \underbrace{B^{2}(1) \backslash f(1,0,0)}\} \times S
\end{aligned}
$$

and for the second coordinate likewise.

The Hopf Bundle

Recall

$$
S^{3}:=\left\{\left.A\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \subset \mathbb{C}^{2}
$$

The Lie group $S^{1}=U(1)=\{z \in \mathbb{C}| | z \mid=1\}$ is acting on it (from the right) via $z \mapsto z g$. Its quotient is diffeomorphic to

$$
S^{3} / S^{1}=: \mathbb{C} P^{1} \cong S^{2}
$$

and its quotient $\operatorname{map} S^{3} \xrightarrow{\pi} S^{2}$ is a principal S^{1}-bundle.
Trivializations are described by

$$
\Phi^{-1}(\zeta, g)=\left(\sqrt{1-|\xi|^{2}}, ~ 5\right)+g
$$

and for the second coordinate likewise.
B^{2} is to be considered with a parametrization $4 \varphi: B^{2} \rightarrow S^{2} \backslash\{(-1,0,0)\}$.

The Hopf Bundle

$T_{p}^{h} S^{3}:=\left(T_{p} \pi^{-1}([p])\right)^{\perp}$ defines a connection A of the principal S^{1}-bundle. $p \in S^{3}: \cdot d T_{p} \mid T_{1 /}^{k} S^{3}$
is an inancplinen,

- $\operatorname{dig}_{g} g\left(T_{\rho}^{a,} S^{3}\right)=T_{p g}^{a} S^{3}$.

The Hopf Bundle
$T_{p}^{h} S^{3}:=\left(T_{p} \pi^{-1}([p])\right)^{\perp}$ defines a connection A of the principal S^{1}-bundle.

Its curvature is described

$$
\varphi^{*} F_{A}=2 \mathrm{i} d x d y
$$

Proof: $T_{\left(z_{1}, z_{2}\right)}\left(\pi^{-1}\left(\pi\left(z_{1}, z_{2}\right)\right)=\left\{t\left(i t, i z_{2}\right) \mid t \in \mathbb{R}\right\}\right.$
\longrightarrow artengonel pugiction to that

$$
\begin{aligned}
& \tilde{A}_{\left(z_{1}, z_{2}\right)}(\underbrace{\zeta_{1}, S_{2}}_{=S})=\operatorname{Re}(\zeta, i z) \text { oz } \quad\|i+\|=1 \text { ! } \\
& A_{\left(z_{1}, z_{2}\right)}=\left(d_{e \mu}\left(\left(z_{1}, z_{2}\right), \cdot\right)\right)^{-1} \tilde{A}_{\left(z_{1}, z_{2}\right)} \\
& i=\tilde{i} \quad i \in \underline{k}(1) \\
& =\operatorname{Re}(., i z) \cdot i \\
& x_{1}+i y_{1}=z_{1} \\
& \Rightarrow A_{\left(z_{1}, z_{2}\right)}=i\left(-y_{1} d x_{1}+x_{1} d y_{1}-y_{2} d x_{2}+x_{2} d y_{2}\right)
\end{aligned}
$$

The Hopf Bundle

$$
\begin{aligned}
& F_{A}=d A+i_{i}^{\prime} \underbrace{\left[A_{1}, \nmid\right\rceil}_{=0}=d A=2 i\left(d x_{1} 1 d y_{1}+d x_{2} 1 d y_{2}\right) \\
& \left(\Phi^{-1}\right)^{*} F_{A}=\left(\Phi^{-1}\right)^{*}\left(2 i d x_{2} \wedge d y_{2}\right)=2 i d x d y \quad{ }_{\square} \quad(x, y) \operatorname{cond.an} B^{2}
\end{aligned}
$$

Therefen $\frac{i}{2 \pi} \int_{S^{2}} F_{A}=\frac{i}{\sqrt{2}} \int_{B^{2}} y^{*} F_{A}=-\frac{1}{11} \operatorname{ror}\left(B^{2}\right)=-1$.

$$
\int_{s^{2}}^{11} c_{1}\left(s^{3}-, s^{2}\right)
$$

The Tautological Bundle

The Hopf bundle is the frame bundle of the tautological line bundle $H \xrightarrow{\pi} \mathbb{C} P^{1}$.

The Tautological Bundle

The Hopf bundle is the frame bundle of the tautological line bundle $H \xrightarrow{\pi} \mathbb{C} P^{1}$.
Equivalently, the line bundle $S^{3} \times_{\text {id }} \mathbb{C}$ with id : $S^{1} \rightarrow S^{1} \subset \mathbb{C}^{*}$ is the tautological line bundle H.

The Tautological Bundle

The Hopf bundle is the frame bundle of the tautological line bundle $H \xrightarrow{\pi} \mathbb{C} P^{1}$.
Equivalently, the line bundle $S^{3} \times_{\text {id }} \mathbb{C}$ with id : $S^{1} \rightarrow S^{1} \subset \mathbb{C}$ is the tautological line bundle H. A camertion $\rightarrow A^{p}$ caurecti: on $H: A^{\rho}=\rho_{*}(A)$

Thus

$$
I=f_{¥^{\prime}}\left(F_{A}\right)
$$

$$
c_{1}\left(S^{3} \xrightarrow{\pi} S^{2}\right)=c_{1}(H)=\omega \in \Omega^{2}\left(S^{2}\right)
$$

with

$$
\int_{S}^{24} \omega=1
$$

The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms $c_{k}(E, \nabla)$ defined by

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} c_{k}(E, \nabla) t^{k}
$$

satisfy the axioms for Chern classes.

The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms $c_{k}(E, \nabla)$ defined by

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} c_{k}(E, \nabla) t^{k}
$$

satisfy the axioms for Chern classes.
(i) Let $f: M \rightarrow N$ be a smooth map, $E \xrightarrow{\pi} N$ a complex vector bundle. Then the pull-back connection ∇^{f} is a connection on $f^{*} E \xrightarrow{\pi} M$ and $F^{\nabla^{f}}=f^{*} F^{\nabla}$.

The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms $c_{k}(E, \nabla)$ defined by

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} c_{k}(E, \nabla) t^{k}
$$

satisfy the axioms for Chern classes.
(i) Let $f: M \rightarrow N$ be a smooth map, $E \xrightarrow{\pi} N$ a complex vector bundle. Then the pull-back connection ∇^{f} is a connection on $f^{*} E \xrightarrow{\pi} M$ and $F^{\nabla^{f}}=f^{*} F^{\nabla}$. In particular,

$$
\operatorname{det}\left(\frac{\mathrm{it}}{2 \pi} F^{\nabla^{f}}+\mathrm{id}_{f^{*} E}\right)=f^{*} \operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} f^{*} c_{k}(E, \nabla) t^{k}
$$

The Axioms and the Chern-Weil Construction

It remains to show that the Chern-Weil forms $c_{k}(E, \nabla)$ defined by

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} c_{k}(E, \nabla) t^{k}
$$

satisfy the axioms for Chern classes.
(i) Let $f: M \rightarrow N$ be a smooth map, $E \xrightarrow{\pi} N$ a complex vector bundle. Then the pull-back connection ∇^{f} is a connection on $f^{*} E \xrightarrow{\pi} M$ and $F^{\nabla^{f}}=f^{*} F^{\nabla}$. In particular,

$$
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla^{f}}+\mathrm{id}_{f^{*} E}\right)=f^{*} \operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} f^{*} c_{k}(E, \nabla) t^{k}
$$

and thus

$$
c_{k}\left(f^{*} E, \nabla^{f}\right)=f^{*} c_{k}(E, \nabla) . \Rightarrow c_{k}\left(f^{*-} E\right)=f^{*} c_{k}^{\left(\frac{1}{-}\right)}
$$

The Axioms and the Chern-Weil Construction

(ii) Let $E_{k} \xrightarrow{\pi} M, k=1$, 2 be two complex vector bundles, ∇^{k} a connection on E_{k}. Then $\nabla:=\left(\nabla^{1}, \nabla^{2}\right)^{T}$ defines a connection on $E_{1} \oplus E_{2}$ and

The Axioms and the Chern-Weil Construction

(ii) Let $E_{k} \xrightarrow{\pi} M, k=1$, 2 be two complex vector bundles, ∇^{k} a connection on E_{k}. Then $\nabla:=\left(\nabla^{1}, \nabla^{2}\right)^{T}$ defines a connection on $E_{1} \oplus E_{2}$ and

$$
F^{\nabla}=\left(\begin{array}{cc}
F^{\nabla^{1}} & 0 \\
0 & F^{\nabla^{2}}
\end{array}\right),
$$

The Axioms and the Chern-Weil Construction

(ii) Let $E_{k} \xrightarrow{\pi} M, k=1$, 2be two complex vector bundles, ∇^{k} a connection on E_{k}. Then $\nabla:=\left(\nabla^{1}, \nabla^{2}\right)^{T}$ defines a connection on $E_{1} \oplus E_{2}$ and

$$
F^{\nabla}=\left(\begin{array}{cc}
F^{\nabla^{1}} & 0 \\
0 & F^{\nabla^{2}}
\end{array}\right),
$$

hence

$$
\begin{aligned}
\operatorname{det}\left(\frac{\mathrm{it}}{2 \pi} F^{\nabla}+\mathrm{id} E\right) & =\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla^{1}}+\mathrm{id}_{E_{1}}\right) \wedge \operatorname{det}\left(\frac{\mathrm{it}}{2 \pi} F^{\nabla^{2}}+\mathrm{id}_{E_{2}}\right) \\
& =\sum_{k=0}^{\infty} t^{k} \sum_{\ell=0}^{k} c_{\ell}\left(E_{1}, \nabla^{1}\right) \wedge c_{k-\ell}\left(E_{2}, \nabla^{2}\right)
\end{aligned}
$$

The Axioms and the Chern-Weil Construction

(ii) Let $E_{k} \xrightarrow{\pi} M, k=1$, 2be two complex vector bundles, ∇^{k} a connection on E_{k}. Then $\nabla:=\left(\nabla^{1}, \nabla^{2}\right)^{T}$ defines a connection on $E_{1} \oplus E_{2}$ and

$$
F^{\nabla}=\left(\begin{array}{cc}
F^{\nabla^{1}} & 0 \\
0 & F^{\nabla^{2}}
\end{array}\right),
$$

hence

$$
\begin{aligned}
\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla}+\mathrm{id} E\right) & =\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla^{1}}+\mathrm{id}_{E_{1}}\right) \wedge \operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla^{2}}+\mathrm{id}_{E_{2}}\right) \\
& =\sum_{k=0}^{\infty} t^{k}\left(\sum_{k=0}^{k} c_{\ell}\left(E_{1}, \nabla^{1}\right) \wedge c_{k-\ell}\left(E_{2}, \nabla^{2}\right)\right)
\end{aligned}
$$

(iii) We computed $c_{1}(H)=-\omega$ above. The axiom follows with (iv)

The Axioms and the Chern-Weil Construction

(ii) Let $E_{k} \xrightarrow{\pi} M, k=1$, 2be two complex vector bundles, ∇^{k} a connection on E_{k}. Then $\nabla:=\left(\nabla^{1}, \nabla^{2}\right)^{T}$ defines a connection on $E_{1} \oplus E_{2}$ and

$$
F^{\nabla}=\left(\begin{array}{cc}
F^{\nabla^{1}} & 0 \\
0 & F^{\nabla^{2}}
\end{array}\right)
$$

hence

$$
\begin{aligned}
\operatorname{det}\left(\frac{\mathrm{it}}{2 \pi} F^{\nabla}+\mathrm{id} E\right) & =\operatorname{det}\left(\frac{\mathrm{i} t}{2 \pi} F^{\nabla^{1}}+\mathrm{id}_{E_{1}}\right) \wedge \operatorname{det}\left(\frac{\mathrm{it}}{2 \pi} F^{\nabla^{2}}+\mathrm{id}_{E_{2}}\right) \\
& =\sum_{k=0}^{\infty} t^{k} \sum_{\ell=0}^{k} c_{\ell}\left(E_{1}, \nabla^{1}\right) \wedge c_{k-\ell}\left(E_{2}, \nabla^{2}\right)
\end{aligned}
$$

(iii) We computed $c_{1}(H)=-\omega$ above. The axiom follows with (iv)
(iv) By definition $c_{\ell}(E, \nabla)$ are the coefficients of the
"characteristic polynomial" of the $k \times k$-matrix (in a local
trivialization) $\frac{i t}{2 \pi} F^{\nabla}$ with entries in $\Omega^{2}(M, \mathbb{C})$, where $k:=r \mathbb{C}_{\mathbb{C}} E$. Hence, $c_{\ell}(E, \nabla)=0$ for all $\ell>k$.

Pontrjagin Classes

Similarly, for a real vector bundle with a connection E, ∇ over a manifold M we may define $\beta_{k} \in \Omega^{2 k}(M ; \mathbb{R})$ via

$$
\operatorname{det}\left(t F^{\nabla}+\operatorname{id}_{E}\right)=\sum_{k=0}^{\infty} t^{k} \beta_{k}(E, \nabla)
$$

Pontrjagin Classes

Similarly, for a real vector bundle with a connection E, ∇ over a manifold M we may define $\beta_{k} \in \Omega^{2 k}(M ; \mathbb{R})$ via

$$
\operatorname{det}\left(t F^{\nabla}+\mathrm{id}_{E}\right)=\sum_{k=0}^{\infty} t^{k} \beta_{k}(E, \nabla)
$$

(E)

They are closed and define de Rham classes $\left[\beta_{k}\right] \in H_{D R}^{2 k}(M ; \mathbb{R})$ which are independent of ∇.

Pontrjagin Classes

Similarly, for a real vector bundle with a connection E, ∇ over a manifold M we may define $\beta_{k} \in \Omega^{2 k}(M ; \mathbb{R})$ via

$$
\operatorname{det}\left(t F^{\nabla}+\operatorname{id}_{E}\right)=\sum_{k=0}^{\infty} t^{k} \beta_{k}(E, \nabla)
$$

They are closed and define de Rham classes $\left[\beta_{k}\right] \in H_{D R}^{2 k}(M ; \mathbb{R})$ which are independent of ∇.

Lemma 78: (i) $\left[\beta_{k}\right]=0$ for k odd.

Pontrjagin Classes

Similarly, for a real vector bundle with a connection E, ∇ over a manifold M we may define $\beta_{k} \in \Omega^{2 k}(M ; \mathbb{R})$ via

$$
\operatorname{det}\left(t F^{\nabla}+\operatorname{id}_{E}\right)=\sum_{k=0}^{\infty} t^{k} \beta_{k}(E, \nabla)
$$

They are closed and define de Rham classes $\left[\beta_{k}\right] \in H_{D R}^{2 k}(M ; \mathbb{R})$ which are independent of ∇.

Lemma 78: (i) $\left[\beta_{k}\right]=0$ for k odd.
(ii) $\left(\frac{\mathrm{i}^{2 \pi}}{2 \pi}\right)^{k} \beta_{2 k}(E, \nabla)=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}, \nabla^{\mathbb{C}}\right)$.

Pontrjagin Classes

Definition 79: Let $E \xrightarrow{\pi} M$ be a real vector bundle. Then

$$
p_{k}(E):=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right) \in H_{D R}^{4 k}(M ; \mathbb{R})
$$

are called the Pontrjagin classes of $\not \subset . E_{-}$

Pontrjagin Classes

Definition 79: Let $E \xrightarrow{\pi} M$ be a real vector bundle. Then

$$
p_{k}(E):=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right) \in H_{D R}^{4 k}(M ; \mathbb{R})
$$

are called the Pontrjagin classes of M. 三
For a smooth manifold M one defines the Pontrjagin classes of M to be

$$
p_{k}(M):=p_{k}(T M)
$$

Pontrjagin Classes

Definition 79: Let $E \xrightarrow{\pi} M$ be a real vector bundle. Then

$$
p_{k}(E):=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right) \in H_{D R}^{4 k}(M ; \mathbb{R})
$$

are called the Pontrjagin classes of M.
For a smooth manifold M one defines the Pontrjagin classes of M to be

$$
p_{k}(M):=p_{k}(T M)
$$

They are also defined axiomatically, integer classes and topological invariants.

Pontrjagin Classes

Definition 79: Let $E \xrightarrow{\pi} M$ be a real vector bundle. Then

$$
p_{k}(E):=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right) \in H_{D R}^{4 k}(M ; \mathbb{R})
$$

are called the Pontrjagin classes of M.
For a smooth manifold M one defines the Pontrjagin classes of M to be

$$
p_{k}(M):=p_{k}(T M)
$$

They are also defined axiomatically, integer classes and topological invariants.

They are cobordism invariants.

$$
\begin{aligned}
& \partial w=M \dot{U}\left(-M^{\prime}\right) \\
& \sim \text { mitis }
\end{aligned}
$$

Pontrjagin Classes

Definition 79: Let $E \xrightarrow{\pi} M$ be a real vector bundle. Then

$$
p_{k}(E):=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right) \in H_{D R}^{4 k}(M ; \mathbb{R})
$$

are called the Pontrjagin classes of M.
For a smooth manifold M one defines the Pontrjagin classes of M to be

$$
p_{k}(M):=p_{k}(T M)
$$

They are also defined axiomatically, integer classes and topological invariants.

They are cobordism invariants.
$p_{k}(M)$ can be defined for topological manifolds, although the tangent bundle has no meaning.

Pontrjagin Classes

Definition 79: Let $E \xrightarrow{\pi} M$ be a real vector bundle. Then

$$
p_{k}(E):=c_{2 k}\left(E \otimes_{\mathbb{R}} \mathbb{C}\right) \in H_{D R}^{4 k}(M ; \mathbb{R})
$$

are called the Pontrjagin classes of M.
For a smooth manifold M one defines the Pontrjagin classes of M to be

$$
p_{k}(M):=p_{k}(T M)
$$

They are also defined axiomatically, integer classes and topological invariants.

They are cobordism invariants.
$p_{k}(M)$ can be defined for topological manifolds, although the tangent bundle has no meaning.
$p_{k}(M)$ are another theme in the story "Curvature and Topology"!

Hirzebruch's Signature Formula
Let M be a closed oriented $4 k$-manifold. Then

$$
[\alpha],[\beta] \in H_{D R}^{2 k}(M) \mapsto \int_{M} \alpha \wedge \beta \in \mathbb{R}
$$

is a non-degenerate symmetric bilinear form.
" in spit of $\alpha \& \beta \quad \int(\alpha+d \gamma) \wedge \beta$

$$
-\int_{|\alpha| \beta \mid} \alpha+\int d f_{\mu} \beta \mid=\int \alpha \times \beta \operatorname{sth}
$$

$$
\begin{aligned}
& \alpha \wedge \beta=(-1)^{\mid N \|} \rho_{1} \beta_{\alpha}=\beta_{1 / \alpha} \Rightarrow \text { Symancic } \\
& d^{*} \alpha=+* d * \alpha=0
\end{aligned}
$$

- $\operatorname{vpp} \operatorname{ma}(\alpha) \operatorname{st} d^{*} \alpha= \pm * d * \alpha=0$

$$
\int \alpha \Lambda * \alpha=\int\|\alpha\|^{2} \alpha M>0
$$

Hirzebruch's Signature Formula

Let M be a closed oriented $4 k$-manifold. Then

$$
[\alpha],[\beta] \in H_{D R}^{2 k}(M) \mapsto \int_{M} \alpha \wedge \beta \in \mathbb{R}
$$

is a non-degenerate symmetric bilinear form.
The signature of $M, \sigma(M)$, is the signature of this form. It is a topological innఝivariant.

Hirzebruch's Signature Formula

Let M be a closed oriented $4 k$-manifold. Then

$$
[\alpha],[\beta] \in H_{D R}^{2 k}(M) \mapsto \int_{M} \alpha \wedge \beta \in \mathbb{R}
$$

is a non-degenerate symmetric bilinear form.
The signature of $M, \sigma(M)$, is the signature of this form. It is a topological inmvariant.

For a closed, oriented 4-manifold M its signature is

$$
\sigma(M)=\frac{1}{3} \int_{M} p_{1}(M)
$$

Hirzebruch's Signature Formula

Let M be a closed oriented $4 k$-manifold. Then

$$
[\alpha],[\beta] \in H_{D R}^{2 k}(M) \mapsto \int_{M} \alpha \wedge \beta \in \mathbb{R}
$$

is a non-degenerate symmetric bilinear form.
The signature of $M, \sigma(M)$, is the signature of this form. It is a topological inmvariant.

For a closed, oriented 4-manifold M its signature is

$$
\sigma(M)=\frac{1}{3} \int_{M} p_{1}(M)
$$

for a 8-manifold M it is

$$
\sigma(M)=\frac{1}{45} \int_{M}\left(7 p_{2}(M)-p_{1}(M)^{2}\right)
$$

Hirzebruch's Signature Formula

Let M be a closed oriented $4 k$-manifold. Then

$$
[\alpha],[\beta] \in H_{D R}^{2 k}(M) \mapsto \int_{M} \alpha \wedge \beta \in \mathbb{R}
$$

is a non-degenerate symmetric bilinear form.
The signature of $M, \sigma(M)$, is the signature of this form. It is a topological inmvariant.

For a closed, oriented 4-manifold M its signature is

$$
\sigma(M)=\frac{1}{3} \int_{M} p_{1}(M)
$$

for a 8-manifold M it is

$$
\sigma(M)=\frac{1}{45} \int_{M}\left(7 p_{2}(M)-p_{1}(M)^{2}\right)
$$

In general, for a closed oriented $4 k$-manifold its signature is determined by its Pontrjagin classes. The formula involves the so-called L-genus and was found by Hirzebruch.

Stiefel-Whitney Classes

