Differential Geometry II
 Variational Calculus

Klaus Mohnke

June 18, 2020

The 1st Stiefel-Whitney Class

Study them as obstruction classes.

The 1st Stiefel-Whitney Class
Study them as obstruction classes.
Let $E \xrightarrow{\pi} M$ be a (real) vector bundle of $r k(E)=k$.
The first Stiefel-Whitney class is a homomorphism $w_{1}(E): \pi_{1}(M) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ such that for $\gamma:[0,1] \rightarrow M \gamma(0)=\gamma(1)$

$$
\begin{aligned}
\left(T_{1}(M)=\right) \pi_{1}\left(M, \lambda_{0}\right) & =\langle\gamma:[0,1]-1 M| \text { cont., } \gamma(0)=\gamma(1)\rangle / \simeq \\
\gamma_{0} \simeq \delta, & \Leftrightarrow \gamma:(0,1) \times(0,1]-1 M \text { cad. }
\end{aligned}
$$

$H_{1}(0, \cdot)=\gamma_{0}, H(1,)=.\lambda_{1}, H(5,0)=x_{0}=H(5,1)$ $\forall s \in[0,1]$

The 1st Stiefel-Whitney Class

Study them as obstruction classes.
Let $E \xrightarrow{\pi} M$ be a (real) vector bundle of $r k(E)=k$.
The first Stiefel-Whitney class is a homomorphism $w_{1}(E): \pi_{1}(M) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ such that for $\gamma:[0,1] \rightarrow M \gamma(0)=\gamma(1)$ $w_{1}(E)([\gamma])=0 \quad \Leftrightarrow \quad \exists\left\{\left\{v_{j}(t)\right\}_{j=1}^{k} \mid\right.$ continuous frame of $\left.E_{\gamma(t)}\right\}$ with $v_{j}(0)=v_{j}(1)$ for all j.

The 1st Stiefel-Whitney Class

Study them as obstruction classes.
Let $E \xrightarrow{\pi} M$ be a (real) vector bundle of $r k(E)=k$.
The first Stiefel-Whitney class is a homomorphism $w_{1}(E): \pi_{1}(M) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ such that for $\gamma:[0,1] \rightarrow M \gamma(0)=\gamma(1)$ $w_{1}(E)([\gamma])=0 \quad \Leftrightarrow \quad \exists\left\{\left\{v_{j}(t)\right\}_{j=1}^{k} \mid\right.$ continuous frame of $\left.E_{\gamma(t)}\right\}$ with $v_{j}(0)=v_{j}(1)$ for all j.

Equivalently, E is orientable over the closed loop γ iff $w_{1}(E)([\gamma])=0$.

$$
\gamma^{n} E \rightarrow[0,1] / 0 \sim_{1} \simeq S^{1}
$$

The 1st Stiefel-Whitney Class

Study them as obstruction classes.
Let $E \xrightarrow{\pi} M$ be a (real) vector bundle of $r k(E)=k$.
The first Stiefel-Whitney class is a homomorphism $w_{1}(E): \pi_{1}(M) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ such that for $\gamma:[0,1] \rightarrow M \gamma(0)=\gamma(1)$ $w_{1}(E)([\gamma])=0 \quad \Leftrightarrow \quad \exists\left\{\left\{v_{j}(t)\right\}_{j=1}^{k} \mid\right.$ continuous frame of $\left.E_{\gamma(t)}\right\}$ with $v_{j}(0)=v_{j}(1)$ for all j.

Equivalently, E is orientable over the closed loop γ iff $w_{1}(E)([\gamma])=0$. In particular, E is orientable iff $w_{1}(E)=0$.

The 1st Stiefel-Whitney Class

Study them as obstruction classes.
Let $E \xrightarrow{\pi} M$ be a (real) vector bundle of $r k(E)=k$.
The first Stiefel-Whitney class is a homomorphism $w_{1}(E): \pi_{1}(M) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ such that for $\gamma:[0,1] \rightarrow M \gamma(0)=\gamma(1)$ $w_{1}(E)([\gamma])=0 \quad \Leftrightarrow \quad \exists\left\{\left\{v_{j}(t)\right\}_{j=1}^{k} \mid\right.$ continuous frame of $\left.E_{\gamma(t)}\right\}$ with $v_{j}(0)=v_{j}(1)$ for all j.

Equivalently, E is orientable over the closed loop γ iff $w_{1}(E)([\gamma])=0$. In particular, E is orientable iff $w_{1}(E)=0$.

Interpretation: Let $P \xrightarrow{\pi} M$ be the frame bundle of $E . P$ is a principal $G I(k ; \mathbb{R})$-bundle. Let $G I^{+}(k ; \mathbb{R}) \subset G I(k ; \mathbb{R})$ be the subgroup of matrices with positive determinant. There exists an $G l^{+}(k, \mathbb{R})$-bundle $Q \xrightarrow{\pi} M$ with a bundle map $\Phi: Q \rightarrow P$ such that $\Phi(q g)=\Phi(q) \rho(g)$ where $\rho(g)=g$ if and only if P is orientable or, equivalently, $w_{1}(E)=0$.

Reductions of Principle Fibre Bundles

Q is called reduction of P with respect to $\rho: G I^{+}(k ; \mathbb{R}) \rightarrow G I(k ; \mathbb{R})$.

Reductions of Principle Fibre Bundles

Q is called reduction of P with respect to $\rho: G I^{+}(k ; \mathbb{R}) \rightarrow G I(k ; \mathbb{R})$.
Other examples: (i) For a euclidean vector bundle (E, g) the frame bundle of orthonormal frames of E is the reduction of the (general) frame bundle P w.r.t. $\rho: O(k) \hookrightarrow G I(k ; \mathbb{R})$.

Reductions of Principle Fibre Bundles

Q is called reduction of P with respect to $\rho: G I^{+}(k ; \mathbb{R}) \rightarrow G I(k ; \mathbb{R})$.
Other examples: (i) For a euclidean vector bundle (E, g) the frame bundle of orthonormal frames of E is the reduction of the (general) frame bundle P w.r.t. $\rho: O(k) \hookrightarrow G I(k ; \mathbb{R})$.
(ii) For a complex vector bundle (E, J) the frame bundle of complex frames is the reduction of the of P
w.r.t. $\rho: G I(k ; \mathbb{C}) \hookrightarrow G I(2 k ; \mathbb{R})$.
(iii) For a unitary vector bundle (E, h) the frame bundle of unitary frames is the reduction of P w.r.t. $\rho: U(k) \hookrightarrow G I(k ; \mathbb{C})$.

Reductions of Principle Fibre Bundles

Q is called reduction of P with respect to $\rho: G I^{+}(k ; \mathbb{R}) \rightarrow G I(k ; \mathbb{R})$.
Other examples: (i) For a euclidean vector bundle (E, g) the frame bundle of orthonormal frames of E is the reduction of the (general) frame bundle P w.r.t. $\rho: O(k) \hookrightarrow G I(k ; \mathbb{R})$.
(ii) For a complex vector bundle (E, J) the frame bundle of complex frames is the reduction of the of P
w.r.t. $\rho: G I(k ; \mathbb{C}) \hookrightarrow G I(2 k ; \mathbb{R})$.
(iii) For a unitary vector bundle (E, h) the frame bundle of unitary frames is the reduction of P w.r.t. $\rho: U(k) \hookrightarrow G I(k ; \mathbb{C})$.
(iv) What additional geometric structure belongs to a reduction of the unitary frame bundle w.r.t. $\rho: S U(k) \hookrightarrow U(k)$?

Reductions of Principle Fibre Bundles

Q is called reduction of P with respect to $\rho: G I^{+}(k ; \mathbb{R}) \rightarrow G I(k ; \mathbb{R})$.
Other examples: (i) For a euclidean vector bundle (E, g) the frame bundle of orthonormal frames of E is the reduction of the (general) frame bundle P w.r.t. $\rho: O(k) \hookrightarrow G I(k ; \mathbb{R})$.
(ii) For a complex vector bundle (E, J) the frame bundle of complex frames is the reduction of the of P w.r.t. $\rho: G I(k ; \mathbb{C}) \hookrightarrow G I(2 k ; \mathbb{R})$.
(iii) For a unitary vector bundle (E, h) the frame bundle of unitary frames is the reduction of P w.r.t. $\rho: U(k) \hookrightarrow G I(k ; \mathbb{C})$.
(iv) What additional geometric structure belongs to a reduction of the unitary frame bundle w.r.t. $\rho: S U(k) \hookrightarrow S U(k)$?

In general, ρ does not have to be injective nor ipjective, non-trivial $\rho: G \rightarrow G$ is possible.

The Spin groups

$$
\left\{A \in M(k, R) \left\lvert\, \begin{array}{c}
A^{\top} A=\mathbb{E}_{t} \\
\operatorname{det} 4=1
\end{array}\right.\right\}
$$

Notice that

$$
\pi_{1}\left(S O^{\prime \prime}(k)\right) \cong \mathbb{Z} / 2 \mathbb{Z} .
$$

for $k \geq 3$.

The Spin groups

Notice that

$$
\pi_{1}(S O(k) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

for $k \geq 3$. The spin group is the universal covering

$$
\operatorname{Spin}(k):=\widehat{S O(k)}
$$

in particular, a double cover.

The Spin groups

Notice that

$$
\pi_{1}(S O(k) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

for $k \geq 3$. The spin group is the universal covering

$$
\operatorname{Spin}(k):=\widetilde{S O(k)}
$$

in particular, a double cover.

$$
\widetilde{S O(k)}=\left\{[\gamma] \mid \gamma:[0,1] \rightarrow S O(k) \text { continuous }, \gamma(0)=\mathbf{E}_{\mathbf{k}}\right\}
$$

where [.] denotes equivalence class w.r.t. homotopies fixing the end points.

The Spin groups

Notice that

$$
\pi_{1}(S O(k) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

for $k \geq 3$. The spin group is the universal covering

$$
\operatorname{Spin}(k):=\widetilde{S O(k)}
$$

in particular, a double cover.

$$
\widetilde{S O(k)}=\left\{[\gamma] \mid \gamma:[0,1] \rightarrow S O(k) \text { continuous }, \gamma(0)=\mathbf{E}_{\mathbf{k}}\right\}
$$

where [.] denotes equivalence class w.r.t. homotopies fixing the end points.
Group operation is pointwise matrix multiplication (well-defined!), $\rho([\gamma])=\gamma(1)$.

The Spin groups

Notice that

$$
\pi_{1}(S O(k) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

for $k \geq 3$. The spin group is the universal covering

$$
\operatorname{Spin}(k):=\widetilde{S O(k)}
$$

in particular, a double cover.

$$
\widetilde{S O(k)}=\left\{[\gamma] \mid \gamma:[0,1] \rightarrow S O(k) \text { continuous }, \gamma(0)=\mathbf{E}_{\mathbf{k}}\right\}
$$

where [.] denotes equivalence class w.r.t. homotopies fixing the end points.
Group operation is pointwise matrix multiplication (well-defined!), $\rho([\gamma])=\gamma(1)$.
To include $k=2$, define $\operatorname{Spin}(2):=S O(2)=S^{1}$ and $\rho(g)=g^{2}$.

Spin Structures of Vector Bundles

Definition 80: (i) Let $(E, g) \xrightarrow{\pi} M$ a (real) oriented euclidean vector bundle of rank k. A spin structure of E is a reduction $\Phi: Q \rightarrow P$ of the corresponding principal $S O(k)$ bundle P of oriented orthogonal frames to a principal $\operatorname{Spin}(k)$ bundle w.r.t. $\rho: \operatorname{Spin}(k) \rightarrow S O(k)$. $\quad \phi(q g)=\phi(q) P(g)$
(ii) Amanifold is called spin if its tangent bundle $T M$ admits a spin structure.

Spin Structures of Vector Bundles

Definition 80: (i) Let $(E, g) \xrightarrow{\pi} M$ a (real) oriented euclidean vector bundle of rank k. A spin structure of E is a reduction $\Phi: Q \rightarrow P$ of the corresponding principal $S O(k)$ bundle P of oriented orthogonal frames to a principal $\operatorname{Spin}(k)$ bundle w.r.t. $\rho: \operatorname{Spin}(k) \rightarrow S O(k)$.
(ii) A manifold is called spin if its tangent bundle TM admits a spin structure.

Remark: (1) For $k=1 S O(1)$ is the trivial group and $Q=P$.

Spin Structures of Vector Bundles

Definition 80: (i) Let $(E, g) \xrightarrow{\pi} M$ a (real) oriented euclidean vector bundle of rank k. A spin structure of E is a reduction $\Phi: Q \rightarrow P$ of the corresponding principal $S O(k)$ bundle P of oriented orthogonal frames to a principal $\operatorname{Spin}(k)$ bundle w.r.t. $\rho: \operatorname{Spin}(k) \rightarrow S O(k)$.
(ii) A manifold is called spin if its tangent bundle $T M$ admits a spin structure.

Remark: (1) For $k=1 S O(1)$ is the trivial group and $Q=P$. (2) The orientability is not essential. Omitting it complicates matters.

Spin Structures of Vector Bundles

Definition 80: (i) Let $(E, g) \xrightarrow{\pi} M$ a (real) oriented euclidean vector bundle of rank k. A spin structure of E is a reduction $\Phi: Q \rightarrow P$ of the corresponding principal $S O(k)$ bundle P of oriented orthogonal frames to a principal $\operatorname{Spin}(k)$ bundle w.r.t. $\rho: \operatorname{Spin}(k) \rightarrow \operatorname{SO}(k)$.
(ii) A manifold is called spin if its tangent bundle $T M$ admits a spin structure.

Remark: (1) For $k=1 S O(1)$ is the trivial group and $Q=P$. (2) The orientability is not essential. Omitting it complicates matters.
(3) The corresponding geometric structure for such a reduction is very subtle, depends on parities of the rank. It has to to with representations of the Clifford algebra of (E, g).

Spin Structures of Vector Bundles

Definition 80: (i) Let $(E, g) \xrightarrow{\pi} M$ a (real) oriented euclidean vector bundle of rank k. A spin structure of E is a reduction $\Phi: Q \rightarrow P$ of the corresponding principal $S O(k)$ bundle P of oriented orthogonal frames to a principal $\operatorname{Spin}(k)$ bundle w.r.t. $\rho: \operatorname{Spin}(k) \rightarrow \operatorname{SO}(k)$.
(ii) A manifold is called spin if its tangent bundle $T M$ admits a spin structure.

Remark: (1) For $k=1 S O(1)$ is the trivial group and $Q=P$. (2) The orientability is not essential. Omitting it complicates matters.
(3) The corresponding geometric structure for such a reduction is very subtle, depends on parities of the rank. It has to to with representations of the Clifford algebra of (E, g).
(4) $H^{1}(M ; \mathbb{Z} / 2 \mathbb{Z})=\operatorname{Hom}\left(\pi_{1}(M) ; \mathbb{Z} / 2 \mathbb{Z}\right)$ acts transitively and effectively on the set of spin structures in that is non-empty.

The 2nd Stiefel Whitney Class

Let $E \xrightarrow{\pi} M$ be a (real) oriented euclidean vector bundle of $r k(E)=k$.

$$
w_{2}(E) \in H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z})
$$

That means: ${ }_{\psi}^{W} \nsim 2(E)$ assigns to each immersion $\varphi: \Sigma \rightarrow M$ of a closed oriented surface an element in $\mathbb{Z} / 2 \mathbb{Z}$ so that it is additive under disjoint unions, invariant under homotopy, zero for the constant map and if $\Phi: V \rightarrow M$ is an immersion of a compact, creinted 3-manifold with boundary, then $w_{2}\left(\left.\Phi\right|_{\partial V}\right)=0$.

The and Stiefel Whitney Class $\% S O(3) \approx \underset{\hat{\uparrow}}{\underset{\sim}{\mathbb{R}} p^{3}}$ Let $E \xrightarrow{\pi} M$ be a (real) oriented euclidean vector bundle of $r k(E)=k$.

$$
w_{2}(E) \in H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z})
$$

That means: $\omega_{2}(E)$ assigns to each immersion $\varphi: \Sigma \rightarrow M$ of a closed oriented surface an element in $\mathbb{Z} / 2 \mathbb{Z}$ so that it is additive under disjoint unions, invariant under homotopy, zero for the constant map and if $\Phi: V \rightarrow M$ is an immersion of a compact manifold with boundary, then $w_{2}\left(\left.\Phi\right|_{\partial V}\right)=0$.

We define $w_{2}(E)(\varphi)=0$ if and only if the pull-back $\varphi^{*} E \xrightarrow{\pi} \Sigma$ admits a spin structure.

$$
\sum(0) \simeq
$$

$$
D \cap \overline{\overline{2} D}=5^{1}
$$

Fundamental Lemma of Calculus of Variations

$$
u \in L_{l_{0} c}^{1}=m / K \in L^{1}(K)
$$

Lemma 81: Let $u: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an locally integrable function on an open subset. Assume that for all smooth functions $\varphi: U \rightarrow \mathbb{R}$ with compact support in U

$$
\int_{U} u \varphi d x=0
$$

Then $u \equiv 0$ outside a zero set.

Fundamental Lemma of Calculus of Variations

Lemma 81: Let $u: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an locally integrable function on an open subset. Assume that for all smooth functions $\varphi: U \rightarrow \mathbb{R}$ with compact support in U

$$
\int_{U} u \varphi d x=0
$$

Then $u \equiv 0$ outside a zero set.
Remark: We have used that in DiffGeo I for determining the critical points in the space of paths of the energy functional.

Fundamental Lemma of Calculus of Variations

Proof: Recall the cut-off function $\varphi_{\epsilon}: \mathbb{R}^{n} \rightarrow[0,10)$ with

$$
\int_{\mathbb{R}^{n}} \varphi_{\epsilon} d x=1 \quad \varphi_{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

and $\operatorname{supp} \varphi_{\epsilon} \subset B_{\epsilon}$.

Fundamental Lemma of Calculus of Variations

Proof: Recall the cut-off function $\varphi_{\epsilon}: \mathbb{R}^{n} \rightarrow[0,1]$ with

$$
\int_{\mathbb{R}^{n}} \varphi_{\epsilon} d x=1
$$

and $\operatorname{supp} \varphi \subset B_{\epsilon}$.
Let $K \subset U$ be compact, $\epsilon_{K}>0$ so that $B_{\epsilon}(x) \subset U$ for $x \in K$ and $\epsilon \leq \epsilon_{K}$.

Fundamental Lemma of Calculus of Variations

Proof: Recall the cut-off function $\varphi_{\epsilon}: \mathbb{R}^{n} \rightarrow[0,1]$ with

$$
\int_{\mathbb{R}^{n}} \varphi_{\epsilon} d x=1
$$

and $\operatorname{supp} \varphi \subset B_{\epsilon}$.
Let $K \subset U$ be compact, $\epsilon_{K}>0$ so that $B_{\epsilon}(x) \subset U$ for $x \in K$ and $\epsilon \leq \epsilon_{K}$.
For $\epsilon<\epsilon_{K}$ define the smooth function $u_{\epsilon}: K \rightarrow \mathbb{R}$

$$
u_{\epsilon}(x):=\int_{\mathbb{R}^{n}} u(y) \underbrace{}_{=0} \text { if } y \notin B_{\varepsilon}(x)
$$

Fundamental Lemma of Calculus of Variations

Proof: Recall the cut-off function $\varphi_{\epsilon}: \mathbb{R}^{n} \rightarrow[0,1]$ with

$$
\int_{\mathbb{R}^{n}} \varphi_{\epsilon} d x=1
$$

and $\operatorname{supp} \varphi \subset B_{\epsilon}$.
Let $K \subset U$ be compact, $\epsilon_{K}>0$ so that $B_{\epsilon}(x) \subset U$ for $x \in K$ and $\epsilon \leq \epsilon_{K}$.
For $\epsilon<\epsilon_{K}$ define the smooth function $u_{\epsilon}: K \rightarrow \mathbb{R}$

$$
u_{\epsilon}(x):=\int_{\mathbb{R}^{n}} u(y) \varphi_{\epsilon}(y-x) d y
$$

By assumption $u_{\epsilon} \equiv 0$.
On the other hand

$$
\lim _{\epsilon \rightarrow 0} u_{\epsilon}=\left.u\right|_{K}
$$

in $L^{1}(K)$.

Fundamental Lemma of Calculus of Variations

Corollary: Let $\sigma: M \rightarrow E$ be a section of a vector bundle over a manifold M. Assume σ is locally integrable (e.g. σ is continuous) and that for any smooth $\varphi: M \rightarrow E^{*}$ with compact support

$$
\int_{M}\langle\varphi, \sigma\rangle d M=0
$$

Mcriented \&
Riemanían
Then $\sigma \equiv 0$ outside a zero set.
Sfatumet \bar{G} indipreet of Rìmamion shenchre \& can be formulated for mon - countable M

Fundamental Lemma of Calculus of Variations

Corollary: Let $\sigma: M \rightarrow E$ be a section of a vector bundle over a manifold M. Assume σ is locally integrable (e.g. σ is continuous) and that for any smooth $\varphi: M \rightarrow E^{*}$ with compact support

$$
\int_{M}\langle\varphi, \sigma\rangle d M=0
$$

Then $\sigma \equiv 0$ outside a zero set.
This is often used in the following way: Assume E is equipped with a euclidean structure and fro any smooth $\tau: M \rightarrow E$ with compact support

$$
\int_{M} g(\not \overbrace{\ell}^{\top}, \sigma) d M=0
$$

Then $\sigma \equiv 0$ outside a zero set.

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, ie. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G. e.g. an $0(k) \rightarrow x, 广$

$$
\begin{aligned}
& \text { cig. am } o(k) ; x, r \\
& \langle x, r)=-T_{\text {rama }}(x \cdot r)
\end{aligned}
$$

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.
crisited
Let $P \xrightarrow{\pi} M$ be a principal G-bundle over the)Riemannian manifold (M, g). The Yang-Mills functional assigns to each connection the energy of its curvature (the field):

$$
A \in \mathcal{C}(P) \mapsto \mathcal{Y} \mathcal{M}(A):=\frac{1}{2} \int_{M}\left\|F_{A}\right\|^{2} d M . \quad \in \mathbb{R}
$$

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle over the Riemannian manifold (M, g). The Yang-Mills functional assigns to each connection the energy of its curvature (the field):

$$
A \in \mathcal{C}(P) \mapsto \mathcal{Y} \mathcal{M}(A):=\frac{1}{2} \int_{M}\left\|F_{A}\right\|^{2} d M
$$

The norm $\|$.$\| on \Lambda^{2}\left(T_{p} M\right) \otimes \underline{\mathbf{g}}_{p}$ is defined by the euclidean structure induced by g and the Killing form.

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle over the Riemannian manifold (M, g). The Yang-Mills functional assigns to each connection the energy of its curvature (the field):

$$
A \in \mathcal{C}(P) \mapsto \mathcal{Y} \mathcal{M}(A):=\frac{1}{2} \int_{M}\left\|F_{A}\right\|^{2} d M
$$

The norm $\|$.$\| on \Lambda^{2}\left(T_{p} M\right) \otimes \underline{\mathbf{g}}_{p}$ is defined by the euclidean structure induced by g and the Killing form.

Recall that $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M ; \underline{\mathbf{g}})$ and that

$$
F_{A+\ddagger_{\alpha}}=F_{A}+D_{A} \hbar_{\alpha}+\frac{1}{2}[\alpha, \alpha] . \quad \longleftarrow
$$

Yang-Mills Connections

We are intererested in extremal points. Necessary condition: For all $\alpha \in \Omega^{1}(M ; \mathbf{g})$
$\prime d_{A} Y M(\alpha)=\left.{ }^{\prime \prime} \frac{d}{d t}\right|_{t=0} \mathcal{Y} \mathcal{M}(A+t \alpha)=0$.
We have

$$
\begin{aligned}
&\left.\frac{d}{2 d t}\right|_{t=0} \int_{M}\left\|F_{A}+t D_{A} \alpha+\frac{t^{2}}{2}[\alpha, \alpha]\right\|^{2} \\
&=\int_{M}\left\langle F_{A}, D_{A} \alpha\right\rangle+t\left\|D_{A} \alpha\right\|^{2}+\frac{3 t^{2}}{2}\left\langle D_{A} \alpha,[\alpha, \alpha]\right\rangle+\left.t^{3}\|[\alpha, \alpha]\|^{2} d M\right|_{t=0} \\
&=\int_{M}\left\langle F_{A}, D_{A} \alpha\right\rangle d M
\end{aligned}
$$

Yang-Mills Connections

We are intererested in extremal points. Necessary condition: For all $\alpha \in \Omega^{1}(M ; \mathbf{g})$

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{Y} \mathcal{M}(A+t \alpha)=0
$$

We have

$$
\begin{aligned}
\frac{d}{2 d t} & \left.\right|_{t=0} \int_{M}\left\|F_{A}+t D_{A} \alpha+\frac{t^{2}}{2}[\alpha, \alpha]\right\|^{2} \\
& =\int_{M}\left\langle F_{A}, D_{A} \alpha\right\rangle+t\left\|D_{A} \alpha\right\|^{2}+\frac{3 t^{2}}{2}\left\langle D_{A} \alpha,[\alpha, \alpha]\right\rangle+\left.t^{3}\|[\alpha, \alpha]\|^{2} d M\right|_{t=0} \\
& =\int_{M}\left\langle F_{A}, D_{A} \alpha\right\rangle d M
\end{aligned}
$$

Now the last expression is equal to

$$
\begin{aligned}
& \int_{M}\left\langle D_{A} \alpha, F_{A}\right\rangle d M=\int_{M}\left\langle D_{A} \alpha \wedge * F_{A}\right\rangle d A K \\
& \quad=\int_{M} d\left\langle\alpha \wedge * F_{A}\right\rangle+\left\langle\alpha \wedge D_{A} * F_{A}\right\rangle d M \stackrel{L}{=} \int_{M}\left\langle\alpha, D_{A}^{*} F_{A}\right\rangle d M
\end{aligned}
$$

Yang-Mills Connections

Here

$$
D_{A}^{*} F_{A}:=(-1)^{n-1} * D_{A} * F_{A}
$$

with $n=\operatorname{dim} M$.

Yang-Mills Connections

Here

$$
D^{*} F_{A}:=(-1)^{n-1} * D_{A} * F_{A}
$$

with $n=\operatorname{dim} M$.
If A is extremal then

$$
D_{A}^{-*} * F_{A}=0 .
$$

Connections satisfying this PDE are called Yang-Mills connections. How about Minima? Let $\operatorname{dim} M=4$.

$$
\begin{aligned}
\left\|F_{A} \pm * F_{A}\right\|^{2} d M & =\left\langle F_{A} \pm * F_{A} \wedge *\left(F_{A} \pm * F_{A}\right)\right\rangle \\
& =\left\langle F_{A} \pm * F_{A} \wedge \pm F_{A}+* F_{A}\right\rangle \\
& = \pm\left\langle F_{A} \wedge F_{A}\right\rangle \pm\left\langle * F_{A} \wedge * F_{A}\right\rangle+2\left\langle F_{A} \wedge * F_{A}\right\rangle \\
& = \pm 2\left\langle F_{A} \wedge F_{A}\right\rangle+2\left\|F_{A}\right\|^{2} d M
\end{aligned}
$$

Yang-Mills Connections

Here

$$
D^{*} F_{A}:=(-1)^{n-1} * D_{A} * F_{A}
$$

with $n=\operatorname{dim} M$.
If A is extremal then

$$
D_{A} * F_{A}=0
$$

Connections satisfying this PDE are called Yang-Mills connections. How about Minima? Let $\operatorname{dim} M=4$.

$$
\begin{aligned}
\left\|F_{A} \pm * F_{A}\right\|^{2} d M & =\left\langle F_{A} \pm * F_{A} \wedge *\left(F_{A} \pm * F_{A}\right)\right\rangle \\
& =\left\langle F_{A} \pm * F_{A} \wedge \pm F_{A}+* F_{A}\right\rangle \\
& = \pm\left\langle F_{A} \wedge F_{A}\right\rangle \pm\left\langle * F_{A} \wedge * F_{A}\right\rangle+2\left\langle F_{A} \wedge * F_{A}\right\rangle \\
& = \pm 2\left\langle F_{A} \wedge F_{A}\right\rangle+2\left\|F_{A}\right\|^{2} d M
\end{aligned}
$$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y)$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual respectivly.

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual respectivly.
Existence obstructed by negative sign of $\pm \int_{M}\left(c_{2}(P)-c_{1}(P)^{2}\right)$.

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual respectivly.
Existence obstructed by negative sign of $\pm \int_{M}\left(c_{2}(P)-c_{1}(P)^{2}\right)$. If they exist they are absolute minima of the Yang-Mills functional.

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual respectivly.
Existence obstructed by negative sign of $\pm \int_{M}\left(c_{2}(P)-c_{1}(P)^{2}\right)$. If they exist they are absolute minima of the Yang-Mills functional.

Based on ADHM-construction and BPST-instantons one can explicitely construct all anti self dual connections on the quaternionic Hopf bundle over S^{4} (see Freed, Uhlenbeck: Instantons and Four-Manifolds. Springer 1991).

Gauge Theory

Let $P \xrightarrow{\pi} M$ be a principal G-bundle for a Lie group G. Consider the associated group bundle $P \times{ }_{\alpha} G=P \times G / \sim$ with the equivalence given by the G-action

$$
(p, h) \sim\left(p g, g^{-1} h g\right)
$$

Gauge Theory

Let $P \xrightarrow{\pi} M$ be a principal G-bundle for a Lie group G. Consider the associated group bundle $P \times{ }_{\alpha} G=P \times G / \sim$ with the equivalence given by the G-action

$$
(p, h) \sim\left(p g, g^{-1} h g\right)
$$

Sections $\mathcal{G}(P):=\operatorname{Gamma}\left(M, P \times{ }_{\alpha} G\right)$ are called gauge transformations.

Gauge Theory

Let $P \xrightarrow{\pi} M$ be a principal G-bundle for a Lie group G. Consider the associated group bundle $P \times{ }_{\alpha} G=P \times G / \sim$ with the equivalence given by the G-action

$$
(p, h) \sim\left(p g, g^{-1} h g\right)
$$

Sections $\mathcal{G}(P):=\operatorname{Gamma}\left(M, P \times{ }_{\alpha} G\right)$ are called gauge transformations.

They act on the space of connections:

$$
(A, g) \in \mathcal{C}(P) \times \mathcal{G}(P) \mapsto g^{-1} A g+g^{-1} d g
$$

One studies the moduli space of anti self dual connections

$$
\mathcal{M}(P):=\left\{A \in \mathcal{C}(P) \mid F_{A}=-* F_{A}\right\} / \mathcal{G}(P)
$$

For generic Riemannian metric on $M, c_{1}(P)=0$ (so-called $S U(2)$-bundle) the subspace of irreducible connections is a manifold of dimension

$$
\operatorname{dim} \mathcal{M}^{*}(P)=8 c_{2}(P)-3\left(1-b_{1}(M)+b_{+}(M)\right)
$$

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4 -dimensional manifolds.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4-dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4 -dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.
From that one could construct infinitely many smooth 4-manifolds which are homeomorphic but not diffeomorphic to \mathbb{R}^{4}.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4-dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.
From that one could construct infinitely many smooth 4-manifolds which are homeomorphic but not diffeomorphic to \mathbb{R}^{4}.
(ii) By M. Freedman simply connected, closed 4-manifolds with isomorphic intersection forms (over \mathbb{Z}) are homeomorphic. Invariants constrcuted from $\mathcal{M}(P)$ distinguish certain algebraic surfaces with the same intersection form.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4-dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.
From that one could construct infinitely many smooth 4-manifolds which are homeomorphic but not diffeomorphic to \mathbb{R}^{4}.
(ii) By M. Freedman simply connected, closed 4-manifolds with isomorphic intersection forms (over \mathbb{Z}) are homeomorphic. Invariants constrcuted from $\mathcal{M}(P)$ distinguish certain algebraic surfaces with the same intersection form.

Remark: In 1994 a new type of field equations, Seiberg-Witten equations would reprove these and often give much stronger results. However, Donaldson theory is still around...

