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The 1st Stiefel-Whitney Class
Study them as obstruction classes.

Let E π→ M be a (real) vector bundle of rk(E ) = k.

The first Stiefel-Whitney class is a homomorphism
w1(E ) : π1(M)→ Z/2Z such that for γ : [0, 1]→ M γ(0) = γ(1)

w1(E )([γ]) = 0 ⇔ ∃{{vj(t)}kj=1 | continuous frame of Eγ(t)}

with vj(0) = vj(1) for all j .

Equivalently, E is orientable over the closed loop γ iff
w1(E )([γ]) = 0.In particular, E is orientable iff w1(E ) = 0.

Interpretation: Let P π→ M be the frame bundle of E . P is a
principal Gl(k;R)-bundle. Let Gl+(k;R) ⊂ Gl(k;R) be the
subgroup of matrices with positive determinant. There exists an
Gl+(k,R)–bundle Q π→ M with a bundle map Φ : Q → P such
that Φ(qg) = Φ(q)ρ(g) where ρ(g) = g if and only if P is
orientable or, equivalently, w1(E ) = 0.
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Reductions of Principle Fibre Bundles

Q is called reduction of P with respect to ρ :Gl+(k;R)→Gl(k;R).

Other examples: (i) For a euclidean vector bundle (E , g) the frame
bundle of orthonormal frames of E is the reduction of the (general)
frame bundle P w.r.t. ρ : O(k) ↪→ Gl(k;R).
(ii) For a complex vector bundle (E , J) the frame bundle of
complex frames is the reduction of the of P
w.r.t. ρ : Gl(k;C) ↪→ Gl(2k;R).
(iii) For a unitary vector bundle (E , h) the frame bundle of unitary
frames is the reduction of P w.r.t. ρ : U(k) ↪→ Gl(k;C).
(iv) What additional geometric structure belongs to a reduction of
the unitary frame bundle w.r.t. ρ : SU(k) ↪→ SU(k)?

In general, ρ does not have to be injective nor injective, non-trivial
ρ : G → G is possible.
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The Spin groups

Notice that
π1(SO(k) ∼= Z/2Z.

for k ≥ 3.

The spin group is the universal covering

Spin(k) := S̃O(k)

in particular, a double cover.

S̃O(k) = {[γ]|γ : [0, 1]→ SO(k) continuous , γ(0) = Ek}

where [.] denotes equivalence class w.r.t. homotopies fixing the end
points.

Group operation is pointwise matrix multiplication (well-defined!),
ρ([γ]) = γ(1).
To include k = 2, define Spin(2) := SO(2) = S1 and ρ(g) = g2.
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Spin Structures of Vector Bundles

Definition 80: (i) Let (E , g) π→ M a (real) oriented euclidean
vector bundle of rank k. A spin structure of E is a reduction
Φ : Q → P of the corresponding principal SO(k) bundle P of
oriented orthogonal frames to a principal Spin(k) bundle
w.r.t. ρ : Spin(k)→ SO(k).
(ii) A manifold is called spin if its tangent bundle TM admits a
spin structure.

Remark: (1) For k = 1 SO(1) is the trivial group and Q = P.
(2) The orientability is not essential. Omitting it complicates
matters.
(3) The corresponding geometric structure for such a reduction is
very subtle, depends on parities of the rank. It has to to with
representations of the Clifford algebra of (E , g).
(4) H1(M;Z/2Z) = Hom(π1(M);Z/2Z) acts transitively and
effectively on the set of spin structures in that is non-empty.
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The 2nd Stiefel Whitney Class

Let E π→ M be a (real) oriented euclidean vector bundle of
rk(E ) = k.

w2(E ) ∈ H2(M;Z/2Z).

That means: ω2(E ) assigns to each immersion ϕ : Σ→ M of a
closed oriented surface an element in Z/2Z so that it is additive
under disjoint unions, invariant under homotopy, zero for the
constant map and if Φ : V → M is an immersion of a compact
manifold with boundary, then w2(Φ|∂V ) = 0.

We define w2(E )(ϕ) = 0 if and only if the pull-back ϕ∗E π→ Σ
admits a spin structure.



The 2nd Stiefel Whitney Class

Let E π→ M be a (real) oriented euclidean vector bundle of
rk(E ) = k.

w2(E ) ∈ H2(M;Z/2Z).

That means: ω2(E ) assigns to each immersion ϕ : Σ→ M of a
closed oriented surface an element in Z/2Z so that it is additive
under disjoint unions, invariant under homotopy, zero for the
constant map and if Φ : V → M is an immersion of a compact
manifold with boundary, then w2(Φ|∂V ) = 0.

We define w2(E )(ϕ) = 0 if and only if the pull-back ϕ∗E π→ Σ
admits a spin structure.



Fundamental Lemma of Calculus of Variations

Lemma 81: Let u : U ⊂ Rn → R be an locally integrable
function on an open subset. Assume that for all smooth functions
ϕ : U → R with compact support in U∫

U
uϕdx = 0.

Then u ≡ 0 outside a zero set.

Remark: We have used that in DiffGeo I for determining the
critical points in the space of paths of the energy functional.
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Fundamental Lemma of Calculus of Variations
Proof: Recall the cut-off function ϕε : Rn → [0, 1] with∫

Rn
ϕεdx = 1

and suppϕ ⊂ Bε.

Let K ⊂ U be compact, εK > 0 so that Bε(x) ⊂ U for x ∈ K and
ε ≤ εK .
For ε < εK define the smooth function uε : K → R

uε(x) :=
∫
Rn

u(y)ϕε(y − x)dy .

By assumption uε ≡ 0.
On the other hand

lim
ε→0

uε = u|K

in L1(K ).
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Fundamental Lemma of Calculus of Variations

Corollary: Let σ : M → E be a section of a vector bundle over a
manifold M. Assume σ is locally integrable (e.g. σ is continuous)
and that for any smooth ϕ : M → E ∗ with compact support∫

M
〈ϕ, σ〉dM = 0.

Then σ ≡ 0 outside a zero set.

This is often used in the following way: Assume E is equipped with
a euclidean structure and fro any smooth τ : M → E with compact
support ∫

M
g(ϕ, σ)dM = 0.

Then σ ≡ 0 outside a zero set.
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The Yang-Mills Functional
Let G be a compact Lie group, 〈., .〉 its positive definite killing
form, i.e. a scalar product on its Lie algebra g which is invariant
under conjugation with an element of G .

Let P π→ M be a principal G–bundle over the Riemannian manifold
(M, g). The Yang-Mills functional assigns to each connection
the energy of its curvature (the field):

A ∈ C(P) 7→ YM(A) := 1
2

∫
M
‖FA‖2dM.

The norm ‖.‖ on Λ2(TpM)⊗ gp is defined by the euclidean
structure induced by g and the Killing form.

Recall that C(P) is an affine space over Ω1(M; g) and that

FA+α = FA + DAα + 1
2[α, α].
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Yang-Mills Connections
We are intererested in extremal points. Necessary condition: For
all α ∈ Ω1(M; g)

d
dt

∣∣∣
t=0
YM(A + tα) = 0.

We have
d
2dt

∣∣∣
t=0

∫
M
‖FA + tDAα + t2

2 [α, α]‖2

=
∫

M
〈FA,DAα〉+t‖DAα‖2+3t2

2 〈DAα, [α, α]〉+t3‖[α, α]‖2dM
∣∣∣
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Yang-Mills Connections

Here
D∗FA := (−1)n−1 ∗ DA ∗ FA

with n = dim M.

If A is extremal then
DA ∗ FA = 0.

Connections satisfying this PDE are called Yang-Mills
connections.
How about Minima? Let dim M = 4.

‖FA ± ∗FA‖2dM = 〈FA ± ∗FA ∧ ∗(FA ± ∗FA)〉
= 〈FA ± ∗FA ∧ ±FA + ∗FA〉
= ±〈FA ∧ FA〉 ± 〈∗FA ∧ ∗FA〉+ 2〈FA ∧ ∗FA〉
= ±2〈FA ∧ FA〉+ 2‖FA‖2dM



Yang-Mills Connections

Here
D∗FA := (−1)n−1 ∗ DA ∗ FA

with n = dim M.
If A is extremal then

DA ∗ FA = 0.

Connections satisfying this PDE are called Yang-Mills
connections.
How about Minima? Let dim M = 4.

‖FA ± ∗FA‖2dM = 〈FA ± ∗FA ∧ ∗(FA ± ∗FA)〉
= 〈FA ± ∗FA ∧ ±FA + ∗FA〉
= ±〈FA ∧ FA〉 ± 〈∗FA ∧ ∗FA〉+ 2〈FA ∧ ∗FA〉
= ±2〈FA ∧ FA〉+ 2‖FA‖2dM



Yang-Mills Connections

Here
D∗FA := (−1)n−1 ∗ DA ∗ FA

with n = dim M.
If A is extremal then

DA ∗ FA = 0.

Connections satisfying this PDE are called Yang-Mills
connections.
How about Minima? Let dim M = 4.

‖FA ± ∗FA‖2dM = 〈FA ± ∗FA ∧ ∗(FA ± ∗FA)〉
= 〈FA ± ∗FA ∧ ±FA + ∗FA〉
= ±〈FA ∧ FA〉 ± 〈∗FA ∧ ∗FA〉+ 2〈FA ∧ ∗FA〉
= ±2〈FA ∧ FA〉+ 2‖FA‖2dM



(Anti)Self Dual Connections
We obtain

1
2

∫
‖FA‖2dM ≥ ±1

2

∫
M
〈FA ∧ FA〉

For G = U(2) we have 〈X ,Y 〉 = −Trace(XY ) ⇒ right hand side
is topological invariant of P:

1
2

∫
‖FA‖2dM ≥ ±2π2

∫
M

(2c2(P)− c1(P)2).

Equality holds for FA = ± ∗ FA. Such connections are called self
dual or anti self dual respectivly.
Existence obstructed by negative sign of ±

∫
M(c2(P)− c1(P)2). If

they exist they are absolute minima of the Yang-Mills functional.

Based on ADHM-construction and BPST-instantons one can
explicitely construct all anti self dual connections on the
quaternionic Hopf bundle over S4 (see Freed,Uhlenbeck:
Instantons and Four-Manifolds. Springer 1991).
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Gauge Theory
Let P π→ M be a principal G-bundle for a Lie group G. Consider
the associated group bundle P ×α G = P × G/ ∼ with the
equivalence given by the G-action

(p, h) ∼ (pg , g−1hg).

Sections G(P) := Gamma(M,P ×α G) are called gauge
transformations.

They act on the space of connections:

(A, g) ∈ C(P)× G(P) 7→ g−1Ag + g−1dg .

One studies the moduli space of anti self dual connections

M(P) := {A ∈ C(P) | FA = − ∗ FA}/G(P).

For generic Riemannian metric on M, c1(P) = 0 (so-called
SU(2)–bundle) the subspace of irreducible connections is a
manifold of dimension

dimM∗(P) = 8c2(P)− 3(1− b1(M) + b+(M)).
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Donaldson Theory
The topology ofM(P) which is invariant under cobordisms gives
rise to obtructions and invariants of 3- and 4–dimensional
manifolds.

Examples: (i) If the intersection form of a simply connected
closed 4-manifold (i.e. the bilinear form on H2

DR(M) discussed
earlier) is definite it is diagonalizable over Z.
From that one could construct infinitely many smooth 4-manifolds
which are homeomorphic but not diffeomorphic to R4.

(ii) By M. Freedman simply connected, closed 4-manifolds with
isomorphic intersection forms (over Z) are homeomorphic.
Invariants constrcuted fromM(P) distinguish certain algebraic
surfaces with the same intersection form.

Remark: In 1994 a new type of field equations, Seiberg-Witten
equations would reprove these and often give much stronger
results. However, Donaldson theory is still around...
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