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The Yang-Mills Functional
Let G be a compact Lie group, 〈., .〉 its positive definite killing
form, i.e. a scalar product on its Lie algebra g which is invariant
under conjugation with an element of G .

Let P π→ M be a principal G–bundle over the Riemannian manifold
(M, h). The Yang-Mills functional assigns to each connection the
energy of its curvature (the field):

A ∈ C(P) 7→ YM(A) := 1
2

∫
M
‖FA‖2hdM.

The norm ‖.‖h on Λ2(TpM)⊗ gp is defined by the euclidean
structure induced by g and the Killing form.

Recall that C(P) is an affine space over Ω1(M; g) and that

FA+α = FA + DAα + 1
2[α, α].
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Yang-Mills Connections
We are intererested in extremal points. Necessary condition: For
all α ∈ Ω1(M; g)

d
dt

∣∣∣
t=0
YM(A + tα) = 0.

We have
d
2dt

∣∣∣
t=0

∫
M
‖FA + tDAα + t2

2 [α, α]‖2h

=
∫

M
(〈FA,DAα〉h+t‖DAα‖2h+3t2

2 〈DAα, [α, α]〉h+t3‖[α, α]‖2h)dM
∣∣∣
t=0

=
∫

M
〈FA,DAα〉hdM.

Now the last expression is equal to∫
M
〈DAα,FA〉hdM =

∫
M
〈DAα ∧ ∗hFAα〉

=
∫

M
d〈α ∧ ∗hFA〉+ 〈α ∧ DA ∗h FA〉dM =

∫
M
〈α,D∗AFA〉hdM



Yang-Mills Connections
We are intererested in extremal points. Necessary condition: For
all α ∈ Ω1(M; g)

d
dt

∣∣∣
t=0
YM(A + tα) = 0.

We have
d
2dt

∣∣∣
t=0

∫
M
‖FA + tDAα + t2

2 [α, α]‖2h

=
∫

M
(〈FA,DAα〉h+t‖DAα‖2h+3t2

2 〈DAα, [α, α]〉h+t3‖[α, α]‖2h)dM
∣∣∣
t=0

=
∫

M
〈FA,DAα〉hdM.

Now the last expression is equal to∫
M
〈DAα,FA〉hdM =

∫
M
〈DAα ∧ ∗hFAα〉

=
∫

M
d〈α ∧ ∗hFA〉+ 〈α ∧ DA ∗h FA〉dM =

∫
M
〈α,D∗AFA〉hdM



Yang-Mills Connections

Here
D∗FA := (−1)n−1 ∗ DA ∗ FA

with n = dim M.

If A is extremal then
D∗AFA = 0.

Connections satisfying this PDE are called Yang-Mills
connections.
How about Minima? Let dim M = 4.

‖FA ± ∗FA‖2dM = 〈FA ± ∗FA ∧ ∗(FA ± ∗FA)〉
= 〈FA ± ∗FA ∧ ±FA + ∗FA〉
= ±〈FA ∧ FA〉 ± 〈∗FA ∧ ∗FA〉+ 2〈FA ∧ ∗FA〉
= ±2〈FA ∧ FA〉+ 2‖FA‖2dM
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(Anti)Self Dual Connections
We obtain

1
2

∫
‖FA‖2dM ≥ ±1

2

∫
M
〈FA ∧ FA〉

For G = U(2) we have 〈X ,Y 〉 = −Trace(XY ) ⇒ right hand side
is topological invariant of P:

1
2

∫
‖FA‖2dM ≥ ±2π2

∫
M

(2c2(P)− c1(P)2).

Equality holds for FA = ± ∗ FA. Such connections are called self
dual or anti self dual, respectivly.
Existence obstructed by negative sign of ±

∫
M(c2(P)− c1(P)2). If

they exist they are absolute minima of the Yang-Mills functional.

Based on ADHM-construction and BPST-instantons one can
explicitely construct all anti self dual connections on the
quaternionic Hopf bundle over S4 (see Freed,Uhlenbeck:
Instantons and Four-Manifolds. Springer 1991).
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Gauge Theory
Let P π→ M be a principal G-bundle for a Lie group G. Consider
the associated group bundle P ×α G = P × G/ ∼ with the
equivalence given by the G-action

(p, h) ∼ (pg , g−1hg).

Sections G(P) := Γ(M,P ×α G) are called gauge
transformations.

They act on the space of connections:

(A, g) ∈ C(P)× G(P) 7→ g−1Ag + g−1dg .

One studies the moduli space of anti self dual connections

M(P) := {A ∈ C(P) | FA = − ∗ FA}/G(P).

For generic Riemannian metric on M, c1(P) = 0 (so-called
SU(2)–bundles) the subspace of irreducible connections is a
manifold of dimension

dimM∗(P) = 8c2(P)− 3(1− b1(M) + b+(M)).
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Donaldson Theory
The topology ofM(P) which is invariant under cobordisms gives
rise to obtructions and invariants of 3- and 4–dimensional
manifolds.

Examples: (i) If the intersection form of a simply connected
closed 4-manifold (i.e. the bilinear form on H2

DR(M) discussed
earlier) is definite it is diagonalizable over Z.
From that one could construct infinitely many smooth 4-manifolds
which are homeomorphic but not diffeomorphic to R4.

(ii) By M. Freedman, simply connected, closed 4-manifolds with
isomorphic intersection forms (over Z) are homeomorphic.
Invariants constrcuted fromM(P) distinguish certain algebraic
surfaces with the same intersection form.

Remark: In 1994 a new type of field equations, Seiberg-Witten
equations would reprove these and often give much stronger
results. However, Donaldson theory is still around...
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Minimal Surfaces
Let C ⊂ R3 be a disjoint union of k simple closed curves. Let F be
compact surface with k boundary components.

Consider the functional

u ∈ B := {u : F → R3|u immersion, u|∂F : ∂F → C diffeo }
7→ area(u) ∈ (0,∞)

For a smooth family {ut}t∈(−ε,ε) ⊂ B, ε > 0

X := d
dt

∣∣∣
t=0

ut : F → R3

is a vector field along u0 with Xp ∈ TpC for all p ∈ ∂F .

Proposition 82: With the notation as above
d
dt

∣∣∣
t=0

area(ut) = −2
∫

F
〈X ,H〉d(u0(F ))

where d(u0(F )) is the area measure of u0(F ) and H its mean
curvature vector.
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Minimal Surfaces

In particular, if u0 is minimal, then

H ≡ 0.

Remark: Immersed surfaces with H ≡ 0 are called minimal
surfaces - even if they have infinite area.

Proof: (i) Notice for all p

ut(p) = u0(p) + tXp + O(t, p)

where ∂tO(t, p)|t=0 = 0. First fundamental form depends
smoothly on t.
For ũu = u0 + tX for t small

d
dt

∣∣∣
t=0

(area(ut)− area(ũt)) = 0.

Replace u by u = u0 + tX .
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For ũu = u0 + tX for t small

d
dt

∣∣∣
t=0

(area(ut)− area(ũt)) = 0.
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ut(p) = u0(p) + tXp + O(t, p)

where ∂tO(t, p)|t=0 = 0. First fundamental form depends
smoothly on t.
For ũu = u0 + tX for t small

d
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Minimal Surfaces
(ii) Let X1,X2 be two vector fields along u0 as above. Then by
chain rule
d
dt

∣∣∣
t=0

area(u0+t(X1,X2)) = d
dt

∣∣∣
t=0

area(u0+tX1)+ d
dt

∣∣∣
t=0

area(u0+tX2).

(iii) Let Xp = XT
p + XN

p such that XT
p = dpu0(ξ) for ξ ∈ TpF and

XN ⊥ dpu0(TpF ) the splitting into tangent and normal part.
XN ,XT are smooth vector fields along u0.
ξ is a vector field on F , ξp ∈ T (∂F ) for p ∈ ∂F .
Hence its flow Φt : F → F is defined and a diffeomorphism.

d
dt

∣∣∣
t=0

u0 ◦ Φt = du0(ξ) = XT

and
d
dt

∣∣∣
t=0

area(u0 + tXT ) = d
dt

∣∣∣
t=0

area(u0 ◦ Φt) = 0.
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Minimal Surfaces

Hence

d
dt

∣∣∣
t=0

area(u0 + tX ) = d
dt

∣∣∣
t=0

area(u0 + tXN).

From now on, assume Xp ⊥ dp(TpF ).

(iv) Using partition of unity we xan write X = X1 + X2 + ...+ Xk
where supp(Xj) ⊂ Uj for a coordinate neighbourhood Uj of F .
Thus, suppose supp(X ) ⊂ U, (U, ϕ,V ) coordinate chart of F . Let
N be the unit normal field and

X = fN

for f : U → R.
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Minimal Surfaces
In coordinates (x1, x2) ∈ V

gij(t) := 〈∂ut
∂xi

,
∂ut
∂xj
〉

= gij(0) + t
( ∂f
∂xj
〈∂u0
∂xi

,N〉+ ∂f
∂xi
〈∂u0
∂xj

,N〉
)

+ tf
(
〈∂u0
∂xi

,
∂N
∂xj
〉+ 〈∂u0

∂xj
,
∂N
∂xi
〉
)

+ O(t2)

= gij(0)− 2tfhij + O(t2)

=
2∑

k=1
(δk

i − 2tfwk
i + O(t2))gkj .

where (hij) is the second fundamental form and (wk
i ) is the

Weingarten map of u0.

Recall Trace(W ) = 2H. Hence
det(gij(t)) = det(gij(0)(1− 2tf Trace(wk

i ) + O(t2)))
= det(gij(0))(1− 4tfH)).
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Minimal Surfaces
Thus

d
dt

∣∣∣
t=0

√
det(gij(t) =

√
det(gij(0))(−2fH).

Finally,

d
dt

∣∣∣
t=0

area(ut) = −2
∫

F
fHd(u0(F ))

− 2
∫

F
〈fN,HN〉d(u0(F ))

= −2
∫

F
〈X ,H〉d(u0(F )) �
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