Differential Geometry II
 (Anti) Self Dual Connections and Minimal Surfaces

Klaus Mohnke

June 23, 2020

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle over the Riemannian manifold (M, h). The Yang-Mills functional assigns to each connection the energy of its curvature (the field):

$$
A \in \mathcal{C}(P) \mapsto \mathcal{Y} \mathcal{M}(A):=\frac{1}{2} \int_{M}\left\|F_{A}\right\|_{h}^{2} d M
$$

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle over the Riemannian manifold (M, h). The Yang-Mills functional assigns to each connection the energy of its curvature (the field):

$$
A \in \mathcal{C}(P) \mapsto \mathcal{Y} \mathcal{M}(A):=\frac{1}{2} \int_{M}\left\|F_{A}\right\|_{h}^{2} d M
$$

The norm $\|\cdot\|_{h}$ on $\Lambda^{2}\left(T_{p} M\right) \otimes \underline{\mathbf{g}}_{p}$ is defined by the euclidean structure induced by of and the Killing form.

The Yang-Mills Functional

Let G be a compact Lie group, $\langle.,$.$\rangle its positive definite killing$ form, i.e. a scalar product on its Lie algebra \underline{g} which is invariant under conjugation with an element of G.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle over the Riemannian manifold (M, h). The Yang-Mills functional assigns to each connection the energy of its curvature (the field):

$$
A \in \mathcal{C}(P) \mapsto \mathcal{Y} \mathcal{M}(A):=\frac{1}{2} \int_{M}\left\|F_{A}\right\|_{h}^{2} d M
$$

The norm $\|\cdot\|_{h}$ on $\Lambda^{2}\left(T_{p} M\right) \otimes \underline{\mathbf{g}}_{p}$ is defined by the euclidean structure induced by $g /$ and the Killing form.
Recall that $\mathcal{C}(P)$ is an affine space over $\Omega^{1}(M ; \underline{\mathbf{g}})$ and that

$$
F_{A+\alpha}=F_{A}+D_{A} \alpha+\frac{1}{2}[\alpha, \alpha] .
$$

Yang-Mills Connections

We are intererested in extremal points. Necessary condition: For all $\alpha \in \Omega^{1}(M ; \mathbf{g})$

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{Y} \mathcal{M}(A+t \alpha)=0
$$

We have

$$
\begin{aligned}
\frac{d}{2 d t} & \left.\right|_{t=0} \int_{M}\left\|F_{A}+t D_{A} \alpha+\frac{t^{2}}{2}[\alpha, \alpha]\right\|_{h}^{2} \\
& =\left.\int_{M}\left(\left\langle F_{A}, D_{A} \alpha\right\rangle_{h}+t\left\|D_{A} \alpha\right\|_{h}^{2}+\frac{3 t^{2}}{2}\left\langle D_{A} \alpha,[\alpha, \alpha]\right\rangle_{h}+t^{3}\|[\alpha, \alpha]\|_{h}^{2}\right) d M\right|_{t} \\
& =\int_{M}\left\langle F_{A}, D_{A} \alpha\right\rangle_{h} d M
\end{aligned}
$$

Yang-Mills Connections

We are intererested in extremal points. Necessary condition: For all $\alpha \in \Omega^{1}(M ; \mathbf{g})$

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{Y} \mathcal{M}(A+t \alpha)=0
$$

Vaination of I TM
We have

$$
\text { at } A
$$

$$
\left.\frac{d}{2 d t}\right|_{t=0} \int_{M}\left\|F_{A}+t D_{A} \alpha+\frac{t^{2}}{2}[\alpha, \alpha]\right\|_{h}^{2}
$$

$$
=\left.\int_{M}\left(\left\langle F_{A}, D_{A} \alpha\right\rangle_{h}+t\left\|D_{A} \alpha\right\|_{h}^{2}+\frac{3 t^{2}}{2}\left\langle D_{A} \alpha,[\alpha, \alpha]\right\rangle_{h}+t^{3}\|[\alpha, \alpha]\|_{h}^{2}\right) d M\right|_{t}
$$

$$
=\int_{M}\left\langle F_{A}, D_{A} \alpha\right\rangle_{h} d M
$$

Now the last expression is equal to

$$
\begin{aligned}
& \int\left(D_{A} \alpha, F_{A}\right) d M=\int\left(D_{A}\right)=\sum_{(<j l}\left(\beta_{j,}, \gamma_{k e}\right) g^{i k} g^{j l} d x^{\top} d x_{1} \phi^{\top}{ }^{\top} \\
& \int_{M} \\
& =\int_{M} \xrightarrow{d\left\langle\alpha \wedge *_{h} F_{A}\right\rangle}+\left\langle\alpha \wedge D_{A} *_{h} F_{A}\right\rangle d M \overline{\text { then }} \int_{M}\left\langle\alpha, D_{A}^{*} F_{A}\right\rangle_{h} d M \leftarrow
\end{aligned}
$$

Yang-Mills Connections

Here

$$
D_{A}^{*} F_{A}:=\overbrace{(-1)^{n-1} * D_{A} * F_{A}}
$$

with $n=\operatorname{dim} M$.

Yang-Mills Connections

Here

$$
D^{*} F_{A}:=(-1)^{n-1} * D_{A} * F_{A}
$$

with $n=\operatorname{dim} M$.
If A is extremal then

$$
D_{A}^{*} F_{A}=0 .
$$

Connections satisfying this PDE are called Yang-Mills connections. How about Minima? Let $\operatorname{dim} M=4$.

$$
\begin{aligned}
\left\|F_{A} \pm * F_{A}\right\|^{2} d M & =\left\langle\left(F_{A} \pm * F_{A}\right) \wedge *\left(F_{A} \pm * F_{A}\right)\right\rangle \quad\langle x \alpha, * \beta\rangle=\langle\alpha, \beta\rangle \\
& =\left\langle\left(F_{A} \pm * F_{A}\right) \wedge\left(\pm F_{A}+* F_{A}\right\rangle\right. \\
& = \pm\left\langle F_{A} \wedge F_{A}\right\rangle \pm\left\langle * F_{A} \wedge * F_{A}\right\rangle+2\left\langle F_{A} \wedge * F_{A}\right\rangle \\
& = \pm 2\left\langle F_{A} \wedge F_{A}\right\rangle+2\left\|F_{A}\right\|^{2} d M
\end{aligned}
$$

Yang-Mills Connections

Here

$$
D^{*} F_{A}:=(-1)^{n-1} * D_{A} * F_{A}
$$

with $n=\operatorname{dim} M$.
If A is extremal then

$$
D_{A}^{*} F_{A}=0 .
$$

Connections satisfying this PDE are called Yang-Mills connections. How about Minima? Let $\operatorname{dim} M=4$.

$$
\begin{aligned}
\left\|F_{A} \pm * F_{A}\right\|^{2} d M & =\left\langle F_{A} \pm * F_{A} \wedge *\left(F_{A} \pm * F_{A}\right)\right\rangle \\
& =\left\langle F_{A} \pm * F_{A} \wedge \pm F_{A}+* F_{A}\right\rangle \\
& = \pm\left\langle F_{A} \wedge F_{A}\right\rangle \pm\left\langle * F_{A} \wedge * F_{A}\right\rangle+2\left\langle F_{A} \wedge * F_{A}\right\rangle \\
& = \pm 2\left\langle F_{A} \wedge F_{A}\right\rangle+2\left\|F_{A}\right\|^{2} d M
\end{aligned}
$$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle \quad\left(+\int \| F_{\Delta \pm * F_{A} \|^{2} d M}\right)
$$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y)$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(\notin)-c_{1}(\notin)^{2}\right)
$$

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual, respectivly.

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual, respectivly.
Existence obstructed by negative sign of $\pm \int_{M}\left(c_{2}(P)-c_{1}(P)^{2}\right)$.

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual, respectivly.
Existence obstructed by negative sign of $\pm \int_{M}\left(c_{2}(P)-c_{1}(P)^{2}\right)$. If they exist they are absolute minima of the Yang-Mills functional.

(Anti)Self Dual Connections

We obtain

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm \frac{1}{2} \int_{M}\left\langle F_{A} \wedge F_{A}\right\rangle
$$

For $G=U(2)$ we have $\langle X, Y\rangle=-\operatorname{Trace}(X Y) \Rightarrow$ right hand side is topological invariant of P :

$$
\frac{1}{2} \int\left\|F_{A}\right\|^{2} d M \geq \pm 2 \pi^{2} \int_{M}\left(2 c_{2}(P)-c_{1}(P)^{2}\right)
$$

Equality holds for $F_{A}= \pm * F_{A}$. Such connections are called self dual or anti self dual, respectivly.
Existence obstructed by negative sign of $\pm \int_{M}\left(c_{2}(P)-c_{1}(P)^{2}\right)$. If they exist they are absolute minima of the Yang-Mills functional.
Based on ADHM-construction and BPST-instantons one can explicitely construct all anti self dual connections on the quaternionic Hopf bundle over S^{4} (see Freed, Uhlenbeck: Instantons and Four-Manifolds. Springer 1991).

Gauge Theory

Let $P \xrightarrow{\pi} M$ be a principal G-bundle for a Lie group G. Consider the associated group bundle $P \times{ }_{\alpha} G=P \times G / \sim$ with the equivalence given by the G-action

$$
(p, h) \sim\left(p g, g^{-1} h g\right)
$$

Gauge Theory

Let $P \xrightarrow{\pi} M$ be a principal G-bundle for a Lie group G. Consider the associated group bundle $P \times{ }_{\alpha} G=P \times G / \sim$ with the equivalence given by the G-action

$$
(p, h) \sim\left(p g, g^{-1} h g\right)
$$

Sections $\mathcal{G}(P):=\Gamma\left(M, P \times{ }_{\alpha} G\right)$ are called gauge transformations.

Gauge Theory

Let $P \xrightarrow{\pi} M$ be a principal G-bundle for a Lie group G. Consider the associated group bundle $P \times{ }_{\alpha} G=P \times G / \sim$ with the equivalence given by the G-action

$$
(p, h) \sim\left(p g, g^{-1} h g\right)
$$

Sections $\mathcal{G}(P):=\Gamma\left(M, P \times{ }_{\alpha} G\right)$ are called gauge transformations.
They act on the space of connections:

$$
\hookrightarrow(A, g) \in \mathcal{C}(P) \times \mathcal{G}(P) \mapsto g^{-1} A g+g^{-1} d g .=g^{*} A
$$

One studies the moduli space of anti self dual connections

$$
\mathcal{M}(P):=\left\{A \in \mathcal{C}(P) \mid F_{A}=-* F_{A}\right\} / \mathcal{G}(P)
$$

For generic Riemannian metric on $M, c_{1}(P)=0$ (so-called $S U(2)$-bundles) the subspace of irreducible connections is a manifold of dimension

$$
\operatorname{dim} \mathcal{M}^{*}(P)=8 c_{2}(P)-3\left(1-b_{1}(M)+b_{+}(M)\right)
$$

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obfructions and invariants of 3 - and 4 -dimensional manifolds.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4 -dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.

$$
E_{8}=\left(\begin{array}{llll}
2+1 & & \\
& \ddots & 2 & 1 \\
& & 20 \\
& 1 & 0 & 2
\end{array}\right) \in M(8,2)
$$

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4 -dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.
From that one could construct infinitely many smooth 4-manifolds which are homeomorphic but not diffeomorphic to \mathbb{R}^{4}.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4-dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.
From that one could construct infinitely many smooth 4-manifolds which are homeomorphic but not diffeomorphic to \mathbb{R}^{4}.
(ii) By M. Freedman, simply connected, closed 4-manifolds with isomorphic intersection forms (over \mathbb{Z}) are homeomorphic. Invariants constrcuted from $\mathcal{M}(P)$ distinguish certain algebraic surfaces with the same intersection form.

Donaldson Theory

The topology of $\mathcal{M}(P)$ which is invariant under cobordisms gives rise to obtructions and invariants of 3 - and 4-dimensional manifolds.

Examples: (i) If the intersection form of a simply connected closed 4-manifold (i.e. the bilinear form on $H_{D R}^{2}(M)$ discussed earlier) is definite it is diagonalizable over \mathbb{Z}.
From that one could construct infinitely many smooth 4-manifolds which are homeomorphic but not diffeomorphic to \mathbb{R}^{4}.
(ii) By M. Freedman, simply connected, closed 4-manifolds with isomorphic intersection forms (over \mathbb{Z}) are homeomorphic. Invariants constrcuted from $\mathcal{M}(P)$ distinguish certain algebraic surfaces with the same intersection form.

Remark: In 1994 a new type of field equations, Seiberg-Witten equations would reprove these and often give much stronger results. However, Donaldson theory is still around...

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Consider the functional

$$
\begin{aligned}
u \in \mathcal{B}:=\{u: F & \left.\rightarrow \mathbb{R}^{3} \mid u \text { immersion, }\left.u\right|_{\partial F}: \partial F \rightarrow C \text { diffeo }\right\} \\
& \mapsto \operatorname{area}(u) \in(0, \infty)
\end{aligned}
$$

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Consider the functional

$$
\begin{aligned}
u \in \mathcal{B}:=\{u: F & \left.\rightarrow \mathbb{R}^{3} \mid u \text { immersion, }\left.u\right|_{\partial F}: \partial F \rightarrow C \text { diffeo }\right\} \\
& \mapsto \operatorname{area}(u) \in(0, \infty)
\end{aligned}
$$

For a smooth family $\left\{u_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathcal{B}, \epsilon>0$

$$
X:=\left.\frac{d}{d t}\right|_{t=0} u_{t}: F \rightarrow \mathbb{R}^{3}
$$

is a vector field along u_{0} with $X_{p} \in T_{p} C$ for all $p \in \partial F$.

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Consider the functional

$$
\begin{aligned}
u \in \mathcal{B}:=\{u: F & \left.\rightarrow \mathbb{R}^{3} \mid u \text { immersion, }\left.u\right|_{\partial F}: \partial F \rightarrow C \text { diffeo }\right\} \\
& \mapsto \operatorname{area}(u) \in(0, \infty)
\end{aligned}
$$

For a smooth family $\left\{u_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathcal{B}, \epsilon>0$

$$
X:=\left.\frac{d}{d t}\right|_{t=0} u_{t}: F \rightarrow \mathbb{R}^{3}
$$

is a vector field along u_{0} with $X_{p} \in T_{p} C$ for all $p \in \partial F$.
Proposition 82: With the notation as above

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{t}\right)=-2 \int_{F}\langle X, \mathcal{H}\rangle d\left(u_{0}(F)\right)
$$

where $d\left(u_{0}(F)\right)$ is the area measure of $u_{0}(F)$ and \mathcal{H} its mean curvature vector.

Minimal Surfaces

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$. First fundamental form depends smoothly on t.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$. First fundamental form depends smoothly on t.
For $\tilde{u}_{u}=u_{0}+t X$ for t small

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{area}\left(u_{t}\right)-\operatorname{area}\left(\tilde{u}_{t}\right)\right)=0
$$

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$. First fundamental form depends smoothly on t.
For $\tilde{u}_{u}=u_{0}+t X$ for t small

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{area}\left(u_{t}\right)-\operatorname{area}\left(\tilde{u}_{t}\right)\right)=0
$$

Replace u by $u=u_{0}+t X$.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.
Hence its flow $\Phi_{t}: F \rightarrow F$ is defined and a diffeomorphism.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.
Hence its flow $\Phi_{t}: F \rightarrow F$ is defined and a diffeomorphism.

$$
\left.\frac{d}{d t}\right|_{t=0} u_{0} \circ \Phi_{t}=d u_{0}(\xi)=X^{T}
$$

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}, X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right)
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.
Hence its flow $\Phi_{t}: F \rightarrow F$ is defined and a diffeomorphism.

$$
\left.\frac{d}{d t}\right|_{t=0} u_{0} \circ \Phi_{t}=d u_{0}(\xi)=X^{T}
$$

and

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{T}\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0} \circ \Phi_{t}\right)=0
$$

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right)
$$

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right)
$$

From now on, assume $X_{p} \perp d_{p}\left(T_{p} F\right)$.

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right) .
$$

From now on, assume $X_{p} \perp d_{p}\left(T_{p} F\right)$.
(iv) Using partition of unity we xan write $X=X_{1}+X_{2}+\ldots+X_{k}$ where $\operatorname{supp}\left(X_{j}\right) \subset U_{j}$ for a coordinate neighbourhood U_{j} of F.

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right)
$$

From now on, assume $X_{p} \perp d_{p}\left(T_{p} F\right)$.
(iv) Using partition of unity we xan write $X=X_{1}+X_{2}+\ldots+X_{k}$ where $\operatorname{supp}\left(X_{j}\right) \subset U_{j}$ for a coordinate neighbourhood U_{j} of F.
Thus, suppose $\operatorname{supp}(X) \subset U,(U, \varphi, V)$ coordinate chart of F. Let N be the unit normal field and

$$
X=f N
$$

for $f: U \rightarrow \mathbb{R}$.

Minimal Surfaces

In coordinates $\left(x_{1}, x_{2}\right) \in V$

$$
\begin{aligned}
g_{i j}(t) & :=\left\langle\frac{\partial u_{t}}{\partial x_{i}}, \frac{\partial u_{t}}{\partial x_{j}}\right\rangle \\
& =g_{i j}(0)+t\left(\frac{\partial f}{\partial x_{j}}\left\langle\frac{\partial u_{0}}{\partial x_{i}}, N\right\rangle+\frac{\partial f}{\partial x_{i}}\left\langle\frac{\partial u_{0}}{\partial x_{j}}, N\right\rangle\right) \\
& +t f\left(\left\langle\frac{\partial u_{0}}{\partial x_{i}}, \frac{\partial N}{\partial x_{j}}\right\rangle+\left\langle\frac{\partial u_{0}}{\partial x_{j}}, \frac{\partial N}{\partial x_{i}}\right\rangle\right)+O\left(t^{2}\right) \\
& =g_{i j}(0)-2 t f h_{i j}+O\left(t^{2}\right) \\
& =\sum_{k=1}^{2}\left(\delta_{i}^{k}-2 t f w_{i}^{k}+O\left(t^{2}\right)\right) g_{k j} .
\end{aligned}
$$

where $\left(h_{i j}\right)$ is the second fundamental form and $\left(w_{i}^{k}\right)$ is the Weingarten map of u_{0}.

Minimal Surfaces

In coordinates $\left(x_{1}, x_{2}\right) \in V$

$$
\begin{aligned}
g_{i j}(t) & :=\left\langle\frac{\partial u_{t}}{\partial x_{i}}, \frac{\partial u_{t}}{\partial x_{j}}\right\rangle \\
& =g_{i j}(0)+t\left(\frac{\partial f}{\partial x_{j}}\left\langle\frac{\partial u_{0}}{\partial x_{i}}, N\right\rangle+\frac{\partial f}{\partial x_{i}}\left\langle\frac{\partial u_{0}}{\partial x_{j}}, N\right\rangle\right) \\
& +t f\left(\left\langle\frac{\partial u_{0}}{\partial x_{i}}, \frac{\partial N}{\partial x_{j}}\right\rangle+\left\langle\frac{\partial u_{0}}{\partial x_{j}}, \frac{\partial N}{\partial x_{i}}\right\rangle\right)+O\left(t^{2}\right) \\
& =g_{i j}(0)-2 t f h_{i j}+O\left(t^{2}\right) \\
& =\sum_{k=1}^{2}\left(\delta_{i}^{k}-2 t f w_{i}^{k}+O\left(t^{2}\right)\right) g_{k j} .
\end{aligned}
$$

where $\left(h_{i j}\right)$ is the second fundamental form and $\left(w_{i}^{k}\right)$ is the Weingarten map of u_{0}.
Recall Trace $(W)=2 H$.

Minimal Surfaces

In coordinates $\left(x_{1}, x_{2}\right) \in V$

$$
\begin{aligned}
g_{i j}(t) & :=\left\langle\frac{\partial u_{t}}{\partial x_{i}}, \frac{\partial u_{t}}{\partial x_{j}}\right\rangle \\
& =g_{i j}(0)+t\left(\frac{\partial f}{\partial x_{j}}\left\langle\frac{\partial u_{0}}{\partial x_{i}}, N\right\rangle+\frac{\partial f}{\partial x_{i}}\left\langle\frac{\partial u_{0}}{\partial x_{j}}, N\right\rangle\right) \\
& +t f\left(\left\langle\frac{\partial u_{0}}{\partial x_{i}}, \frac{\partial N}{\partial x_{j}}\right\rangle+\left\langle\frac{\partial u_{0}}{\partial x_{j}}, \frac{\partial N}{\partial x_{i}}\right\rangle\right)+O\left(t^{2}\right) \\
& =g_{i j}(0)-2 t f h_{i j}+O\left(t^{2}\right) \\
& =\sum_{k=1}^{2}\left(\delta_{i}^{k}-2 t f w_{i}^{k}+O\left(t^{2}\right)\right) g_{k j} .
\end{aligned}
$$

where $\left(h_{i j}\right)$ is the second fundamental form and $\left(w_{i}^{k}\right)$ is the Weingarten map of u_{0}.
Recall Trace $(W)=2 H$. Hence

$$
\begin{aligned}
\operatorname{det}\left(g_{i j}(t)\right) & =\operatorname{det}\left(g_{i j}(0)\left(1-2 t f \operatorname{Trace}\left(w_{i}^{k}\right)+O\left(t^{2}\right)\right)\right) \\
& \left.=\operatorname{det}\left(g_{i j}(0)\right)(1-4 t f H)\right)
\end{aligned}
$$

Minimal Surfaces

Thus

$$
\left.\frac{d}{d t}\right|_{t=0} \sqrt{\operatorname{det}\left(g_{i j}(t)\right.}=\sqrt{\operatorname{det}\left(g_{i j}(0)\right)}(-2 f H) .
$$

Minimal Surfaces

Thus

$$
\left.\frac{d}{d t}\right|_{t=0} \sqrt{\operatorname{det}\left(g_{i j}(t)\right.}=\sqrt{\operatorname{det}\left(g_{i j}(0)\right)}(-2 f H)
$$

Finally,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{t}\right) & =-2 \int_{F} f H d\left(u_{0}(F)\right) \\
& -2 \int_{F}\langle f N, H N\rangle d\left(u_{0}(F)\right) \\
& =-2 \int_{F}\langle X, \mathcal{H}\rangle d\left(u_{0}(F)\right) \quad \square
\end{aligned}
$$

