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Let C C R3 be a disjoint union of k simple closed curves. Let F be
compact surface with k boundary components.

Consider the functional
ueB:={u:F — R3uimmersion, u|gr : OF — C diffeo }

— area(u) € (0,00)
For a smooth family {ut}e(—ce) C B, €>0

d
= — - F 5 R3
dt‘t:Out

is a vector field along ug with X, € T,C for all p € OF

Proposition 82: With the notation as above

— area
dt ’t:O (ue)

2 [[(X.Hd(u(F)) =gt
.

where d(up(F)) is the area measure of ug(F) and H its mean
curvature vector.
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Minimal Surfaces
In particular, if ug is minimal, then
H =0.

Remark: Immersed surfaces with H = 0 are called minimal
surfaces - even if they have infinite area.

Proof: (i) Notice for all p
ut(p) = uo(p) + tX, + O(t, p)

where 0;O(t, p)|t=0 = 0. First fundamental form depends
smoothly on t.
For i, = ug + tX for t small

E‘tzo(area(“t) — area({i)) = 0.

Replace u by u = ug + tX.
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Minimal Surfaces
(i) Let Xi, X2 be two vector fields along ug as above. Then by
chain rule

d d
dt ‘ t:Oarea(u0+t(X1+X2)) =% ‘ tZOarea(uo—i-tXl)—ka ’tzoarea(uo—ktXQ),

(iii) Let X, = X + X such that X = dyup(¢) for ¢ € T,F and
XN L dyug(T,F) the splitting into tangent and normal part.

XN XT are smooth vector fields along up.

€ is a vector field on F, &, € T(OF) for p € OF.

Hence its flow ®; : F — F is defined and a diffeomorphism.

d
I’t:o“" 0 ®r = dug() = X7

and P~ Ja?ol Aemd5 k.falg:\':LmM

d
dt‘tzoarea(uo + tXT) = 7‘ B area(uo ° d>t) — O

dtlt=0
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Hence

d
area(up + tX) = a’tioarea(uo + tXM).

dt ’t:O
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Minimal Surfaces

Hence

dt‘tzoarea(uo +tX) = i‘ _ area(up + txM).

dt lt=0
From now on, assume X, L dp(T,F).

(iv) Using partition of unity we xan write X = X1 + Xo + ... + Xi
where supp(X;) C U; for a coordinate neighbourhood U; of F.

Thus, suppose supp(X) C U, (U, ¢, V) coordinate chart of F. Let
N be the unit normal field and

X =1fN

for f: U — R.



Minimal Surfaces
, b= G, ¢ {/,e/\/
In coordinates (x1,x2) € V

L aut 8U1_— - -
8 =Gy ag) | Tap® LM
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where (hj;) is the second fundamental form and (w;

Weingarten map of ug.



Minimal Surfaces
In coordinates (x1,x2) € V

8Ut 6ut
gij(t) = (5.5
J Ox; " 0x;
of dug of dug
=gi(0) +t(5 (5 N+ (5N
J (8 Ox; Ox; " Ox; )
dug 8N Oug ON

+tf(<67x,-’87>g>+<6xj P I>)+O( )

= g;j(O) — 2tfh,'j + O(t )
2

= > (6F — 2tfwf + O(t%))gi;-
k=1

where (h;;) is the second fundamental form and (w}) is the
Weingarten map of ug. W, 2 7,77~
Recall Trace(W) = 2H.



Minimal Surfaces
In coordinates (x1,x2) € V

8Ut 8U1_—
gi(t) == (5 5—)
J Ox; " 0x;
af du of du
= £1(0) + t(5 (G M+ 5 G M)

dug 8N Oug ON
(G o)+ (g ) T O

= g;j(O) — 2tfh,'j + O(t )

2
= > (6F — 2tfwf + O(t%))gi;-

wf) is the

where (hj;) is the second fundamental form and (w;

Weingarten map of ug.
Recall Trace(W) = 2H. Hence
det(g;(t)) = det(g;(0)(1 — 2tfTrace(w}) + O(t?)))
= det(gj(0))(1 — 4tfH)).



- £
Minimal Surfaces YAit = U,;; + oC(L/
Thus

%LZO\/ det(gy(t) = \/det(g;(0))(—2H).



Minimal Surfaces
Thus

%‘t:o\/det(g’l(t \/det gU 2fH

Finally, ~ e m v, = [~ g

L dmr)

dt‘t:oarea(ut) - _2/,: fHd(uo(F))

~2 [ (W, HN) (o)
F
=2 [ (X Hd(w(F) D
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Lagrangian Mechanics

Let M be a smooth manifold (the configuration space). Let
L: TMxR—=R

be a smooth function. If L is constant on R it is called
autonomous.

Examples: (i) M = R3, L(x,v) = 2Z||v||?> — V(x). V is the
potential energy W is the kinetic energy of the system. The
equation of motion is Newton's equation. Y€ ZM

(ii) Let (M, g) be a Riemannian manifold, L(x,x) := %H)’(HE(X)— is
the system of a free mass point: no forces are acting on it. The
equation of motion is the geodesic equation.
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The state of a point mass at time ty is dexribed by location and
velocity: (xo, vp). Its dynamics is described as the Extrema of the
Lagrange functional: ~ : [a,b] = M

among all differentiable curves ~ : [a, b] — M with fixed endpoints
+(8) = x0 and ~(b) = x1.



Lagrangian Mechanics

The state of a point mass at time ty is dexribed by location and
velocity: (xo, vp). Its dynamics is described as the Extrema of the
Lagrange functional: ~ : [a,b] = M

among all differentiable curves ~ : [a, b] — M with fixed endpoints
+(8) = x0 and ~(b) = x1.

To describe its extremal points let £ be a smooth vector field along
7y which vanishes at t = a, b and {v; : [a, b] = M}, ¢(_c ) smooth
family, v-(a) = xo and ~,(b) = xy for all 7 with

d

E v =¢&.

7=0




Lagrangian Mechanics
We need to compute the first variation.

Lemma 83: There is an smooth section X, € I'(y*T*M) such
that

,,\T{ [ (¥0)) =:d,L(€) = / XpA(€)(t)dt.

for all smooth vectorfields £ along ~.

The proof usually starts with the remark that it suffices to consider
& with support in a coordinate neighbourhood of a chart (U, ¢, V)
of M (as we have done for minimal surfaces). In such coordinates

one shows that

Xt = 3 (5008900, = (0 3(0),)
J= ~——————

—————



Lagrangian Mechanics
We need to compute the first variation.
Lemma 83: There is an smooth section X, € I'(y*T*M) such

that —

}7{4).2 6‘14. {‘LJ/C[ oy [r,/.l)}
d,L(§) = XL7 (t)dt.c—

a
for all smooth vectorfields £ along ~. 627/7
The proof usually starts with the remark that it suffices to consider
& with support in a coordinate neighbourhood of a chart (U, ¢, V)
of M (as we have done for minimal surfaces). In such coordinates
one shows that

oL d oL

—(v(t)¥(t), t) — (5 t dx/

Tl FX) ;(axj(v( 1(8).6) = (5 (.32, 0)) e
Hence if 7y is extremal it implies tehe Euler-Lagrange equations
which in local coordinates are given as

S (0.0 - SO =0 &

j
forall j=1.....n
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Lagrangian Mechanics R Ay

Examples: (1) M =R3, L(x,v) = Z|v[|?> = V(x) (v =X). The
Euler-Lagrange equations boil down to

& (m3) = ~9V(x()

dt f)/ - fy b

Newton's equations of classical mechanics.
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d
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Examples: (1) M =R3, L(x,v) = Z2|v|?> - V(x) (v =%). The
Euler-Lagrange equations boil down to

& (mi) = ~VV((0),

Newton's equations of classical mechanics.

(2) In local coordinates L(x, x) = 2||x|]g(x) 5 Z?le gi(x)x'5.
Hence the Euler-Lagrange-equations become

> S 0)ileite) — 25 (O)ile) =0

=1
e

.
/ Ll
forall k =1,...,n, i.e. the geodesic equations! 57((/ = Z r‘d Yi ¥



Lagrangian Mechanics
Examples: (1) M =R3, L(x,v) = Z2|v|?> - V(x) (v =%). The
Euler-Lagrange equations boil down to

& (mi) = ~VV((0),

Newton's equations of classical mechanics.

(2) In local coordinates L(x, x) = 2||x|]g(x) 5 Z?le gi(x)x'5.

Hence the Euler-Lagrange-equations become

> S8 (0 (e)3(e) — 255 () =

] Oxy
for all k =1,...,n, i.e. the geodesic equations!
A global formulation is given by

(V37 =)Vy3 =0,



The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:

do©=2| / NICRORRORE:
_/ '77' t) '77'( ) )dt

d
= [ dysenle(o=|  A-(t))dt.
/a CIORIO) t(dT‘Tzov (1))

where L; : TM x R — Ris L¢(x,v) := L(x, v, t).
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We derive a global formulation of general
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Ge©)= 2| / " Ln(0).30(0),
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d
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d

Jrl_ 7t € TawaenT™ 7




The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:

7 / " Ln(0).30(0),
= [7 9] o). 30, O

d
= [ dysenle(o=|  A-(t))dt.
/a CIORIO) t(dT‘Tzov (1))

where L; : TM x R — R is L¢(x,v) := L(x, v, t). What is

dq
drlr=0

d,L(€) =

Y (t) € Ty sen TM 7

Fix a connection V on TM 5 M. Recall for the smooth map
T TM—> M

d d d

dooyscom( | _ir(0) = g-| (G0 = o




The Euler-Lagrange Equations
With the isomorphism (d(s(e)5(0)™) ™"+ TyyM = Ty 509 TM

d
dr

Y2 () = (dia(e),50m) " (E(L)) = VL E(t).

7=0 dt
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With the isomorphism (d(s(e)5(0)™) ™"+ TyyM = Ty 509 TM

d i 3
ol _ () = (i 597) Hg(r) = V%é(t).
We get
d :
dorsnlelg-| _i(0)

= diy(0) () Le(diye) (™) THE())) + d@(t)ﬁ(t))Lt(V:%E (1))
We identified T, ,\(TxM) = T, M.
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The Euler-Lagrange Equations
With the isomorphism (d('y(t),"y(t)ﬂ') : 'y(t)M — T( (£),3()) ™

d

| 37(6) = (di a9™) () = VL E(D).

dt

We get

d .
dorsnlelg-| _i(0)

= o Leldama0m ™ (60N + i) Le(V L E(E)):
We identified T, ,\(TxM) = T, M.

Partial integration yields

/ diy(1)4(2)) (V f()dt /V (d0(0)4(0) Le)(E(1))dt,

where d ¢ ke = d(v(fm(f))“’n osn(Trom & 170N



The Euler-Lagrange Equations
With the isomorphism (d('y(t),"y(t)ﬂ') : 'y(t)M — T( (£),3()) ™

a4
d7lr=0

Y2 () = (dia(e),50m) " (E(L)) = VL E(t).

dt

We get

d .
dorsnlelg-| _i(0)

= o Leldama0m ™ (60N + i) Le(V L E(E)):
We identified T, ,\(TxM) = T, M.

Partial integration yields

/ diy(1)4(2)) (V f()dt /V (d0(0)4(0) Le)(E(1))dt,

where df, ) 5oy Le = d(w(r),w(t))Lt’T( oney(Tooy = M the
covariant derivative applied to it is the one mduced by V7 and we

make use of £(a) = £(b) = 0.



The Euler-Lagrange Equations
We end up with

b
d,L(¢) = / (d(v(rm(r))Lro(d(ﬂr)w(t)ﬂ)_l—vz%(d(vw(t),w(t))Lt))(5(t))dt

which has to vanish for all £.



The Euler-Lagrange Equations
We end up with

b
dyL(§) = / (d(v(t)w))Lro(d(vumt)ﬂ)_l—vz%(d(vw(t),w(t))Lt))(5“))"’-‘
which has to vanish for all £.

Proposition 84: An extremal path v : [a, b] — M in the space of
all such maps with the same endpoints y(a) = xo and v(b) = x;
satisfies the Euler-Lagrange equations

iy ) Le © (diy(e) 4(0)m) " = Ve (doaele) =0.



The Euler-Lagrange Equations
We end up with

d
dt

b
d,L(€) = / (dovoratnLeolda 0m) =V (0 sepLe)) (E(0)dt

which has to vanish for all £.

Proposition 84: An extremal path v : [a, b] — M in the space of
all such maps with the same endpoints y(a) = xo and v(b) = x;
satisfies the Euler-Lagrange equations

iy ) Le © (diy(e) 4(0)m) " = Ve (doaele) =0.

Remark: Notice: Both terms depend on the auxilary connection
V chosen, their difference, however, does not. (Exercise: Show this
directly without referring to the fact that these equations describe
the critical points of a functional which is defined without
reference to V)



