Differential Geometry II
 Minimal Surfaces and Lagranian Mechanics

Klaus Mohnke

June 25, 2020

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Minimal Surfaces
Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Consider the functional

$$
u \in \mathcal{B}:=\left\{u: F \rightarrow \mathbb{R}^{3} \mid u \text { immersion, }\left.u\right|_{\partial F}: \partial F \rightarrow C \text { diffeo }\right\}
$$

$$
\begin{aligned}
& \mapsto \operatorname{area}(u) \in(0, \infty) \\
& \int_{F} d(u(F)), \text { locally } \bar{m} \text { coovoinot } \\
& d(u(F))=-\sqrt{d h t}\left(g_{i j}(x)\right) d x_{1} d x_{2} \\
& g_{i j}(x)=\left\langle\frac{\partial u}{\partial x_{i}}, \frac{\partial u}{\partial x_{j}}\right\rangle
\end{aligned}
$$

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Consider the functional

$$
\begin{aligned}
u \in \mathcal{B}:=\{u: F & \left.\rightarrow \mathbb{R}^{3} \mid u \text { immersion, }\left.u\right|_{\partial F}: \partial F \rightarrow C \text { diffeo }\right\} \\
& \mapsto \operatorname{area}(u) \in(0, \infty)
\end{aligned}
$$

For a smooth family $\left\{u_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathcal{B}, \epsilon>0$

$$
X:=\left.\frac{d}{d t}\right|_{t=0} u_{t}: F \rightarrow \mathbb{R}^{3}
$$

is a vector field along u_{0} with $X_{p} \in T_{p} C$ for all $p \in \partial F$.

Minimal Surfaces

Let $C \subset \mathbb{R}^{3}$ be a disjoint union of k simple closed curves. Let F be compact surface with k boundary components.

Consider the functional

$$
\begin{aligned}
u \in \mathcal{B}:=\{u: F & \left.\rightarrow \mathbb{R}^{3} \mid u \text { immersion, }\left.u\right|_{\partial F}: \partial F \rightarrow C \text { diffeo }\right\} \\
& \mapsto \operatorname{area}(u) \in(0, \infty)
\end{aligned}
$$

For a smooth family $\left\{u_{t}\right\}_{t \in(-\epsilon, \epsilon)} \subset \mathcal{B}, \epsilon>0$

$$
X:=\left.\frac{d}{d t}\right|_{t=0} u_{t}: F \rightarrow \mathbb{R}^{3}
$$

is a vector field along u_{0} with $X_{p} \in T_{p} C$ for all $p \in \partial F$.

D fine in a
Lord. ubld
$N=\frac{\frac{\partial u}{\partial x_{1}} \times \frac{x_{2}}{x_{2}}}{\left\|\frac{x_{2}}{\partial x_{2}} \times \frac{x_{1}}{\partial x_{2}}\right\|}$

Proposition 82: With the notation as above

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{t}\right)=-2 \int_{F}\langle X, \mathcal{H}\rangle d\left(u_{0}(F)\right)
$$

where $d\left(u_{0}(F)\right)$ is the area measure of $u_{0}(F)$ and \mathcal{H} its mean curvature vector.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0 . \quad\binom{\text { fundaunutal Leviera }}{\text { of Calculus of variations }}
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$. First fundamental form depends smoothly on t.

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$. First fundamental form depends smoothly on t.
For $\tilde{u}_{4}=u_{0}+t X$ for t small

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{area}\left(u_{t}\right)-\operatorname{area}\left(\tilde{u}_{t}\right)\right)=0
$$

Minimal Surfaces

In particular, if u_{0} is minimal, then

$$
\mathcal{H} \equiv 0
$$

Remark: Immersed surfaces with $\mathcal{H} \equiv 0$ are called minimal surfaces - even if they have infinite area.

Proof: (i) Notice for all p

$$
u_{t}(p)=u_{0}(p)+t X_{p}+O(t, p)
$$

where $\left.\partial_{t} O(t, p)\right|_{t=0}=0$. First fundamental form depends smoothly on t.
For $\tilde{u}_{u}=u_{0}+t X$ for t small

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{area}\left(u_{t}\right)-\operatorname{area}\left(\tilde{u}_{t}\right)\right)=0
$$

Replace u by $u=u_{0}+t X$.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part.

$$
x_{p}^{N}=0 \quad \forall p \in \partial F
$$

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.
Hence its flow $\Phi_{t}: F \rightarrow F$ is defined and a diffeomorphism.

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.
Hence its flow $\Phi_{t}: F \rightarrow F$ is defined and a diffeomorphism.

$$
\left.\frac{d}{d t}\right|_{t=0} u_{0} \circ \Phi_{t}=d u_{0}(\xi)=X^{T}
$$

Minimal Surfaces

(ii) Let X_{1}, X_{2} be two vector fields along u_{0} as above. Then by chain rule

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t\left(X_{1}+X_{2}\right)\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{1}\right)+\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X_{2}\right) .
$$

(iii) Let $X_{p}=X_{p}^{T}+X_{p}^{N}$ such that $X_{p}^{T}=d_{p} u_{0}(\xi)$ for $\xi \in T_{p} F$ and $X^{N} \perp d_{p} u_{0}\left(T_{p} F\right)$ the splitting into tangent and normal part. X^{N}, X^{T} are smooth vector fields along u_{0}.
ξ is a vector field on $F, \xi_{p} \in T(\partial F)$ for $p \in \partial F$.
Hence its flow $\Phi_{t}: F \rightarrow F$ is defined and a diffeomorphism.
and

$$
\left.\frac{d}{d t}\right|_{t=0} u_{0} \circ \Phi_{t}=d u_{0}(\xi)=X^{T}
$$

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right)
$$

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right)
$$

From now on, assume $X_{p} \perp d_{p}\left(T_{p} F\right)$.

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right) .
$$

From now on, assume $X_{p} \perp d_{p}\left(T_{p} F\right)$.
(iv) Using partition of unity we xan write $X=X_{1}+X_{2}+\ldots+X_{k}$ where $\operatorname{supp}\left(X_{j}\right) \subset U_{j}$ for a coordinate neighbourhood U_{j} of F.

Minimal Surfaces

Hence

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X\right)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{0}+t X^{N}\right)
$$

From now on, assume $X_{p} \perp d_{p}\left(T_{p} F\right)$.
(iv) Using partition of unity we xan write $X=X_{1}+X_{2}+\ldots+X_{k}$ where $\operatorname{supp}\left(X_{j}\right) \subset U_{j}$ for a coordinate neighbourhood U_{j} of F.
Thus, suppose $\operatorname{supp}(X) \subset U,(U, \varphi, V)$ coordinate chart of F. Let N be the unit normal field and

$$
X=f N
$$

for $f: U \rightarrow \mathbb{R}$.

Minimal Surfaces

In coordinates $\left(x_{1}, x_{2}\right) \in V$

$$
u_{t}=u_{0}+t f N
$$

$$
\begin{aligned}
g_{i j}(t) & :=\left\langle\frac{\partial u_{t}}{\partial x_{i}}, \frac{\partial u_{t}}{\partial x_{j}}\right\rangle \\
& =g_{i j}(0)+t\left(\frac{\partial f}{\partial x_{j}}\left\langle\frac{\tau^{u_{u_{0}(p)}}}{\frac{\partial u_{i}}{}}, N\right\rangle+\frac{\partial f}{\partial x_{0}}(\mathcal{F}) \perp N_{p}\right. \\
& \left.\left\langle\frac{\partial u_{0}}{\partial x_{j}}, N\right\rangle\right) \\
& +\underline{t f}\left(\left\langle\frac{\partial u_{0}}{\partial x_{i}}, \frac{\partial N}{\partial x_{j}}\right\rangle+\left\langle\frac{\partial u_{0}}{\partial x_{j}}, \frac{\partial N}{\partial x_{i}}\right\rangle\right)+O\left(t^{2}\right) \\
& =\frac{g_{i j}(0)-2 t f h_{i j}}{\frac{O\left(t^{2}\right)}{2}}\left(\delta_{i}^{k}-2 t f w_{i}^{k}+O\left(t^{2}\right)\right) g_{k j} . \\
& =\sum_{k=1}
\end{aligned}
$$

where $\left(h_{i j}\right)$ is the second fundamental form and $\left(w_{i}^{k}\right)$ is the Weingarten map of u_{0}.

Minimal Surfaces

In coordinates $\left(x_{1}, x_{2}\right) \in V$

$$
\begin{aligned}
g_{i j}(t) & :=\left\langle\frac{\partial u_{t}}{\partial x_{i}}, \frac{\partial u_{t}}{\partial x_{j}}\right\rangle \\
& =g_{i j}(0)+t\left(\frac{\partial f}{\partial x_{j}}\left\langle\frac{\partial u_{0}}{\partial x_{i}}, N\right\rangle+\frac{\partial f}{\partial x_{i}}\left\langle\frac{\partial u_{0}}{\partial x_{j}}, N\right\rangle\right) \\
& +t f\left(\left\langle\frac{\partial u_{0}}{\partial x_{i}}, \frac{\partial N}{\partial x_{j}}\right\rangle+\left\langle\frac{\partial u_{0}}{\partial x_{j}}, \frac{\partial N}{\partial x_{i}}\right\rangle\right)+O\left(t^{2}\right) \\
& =g_{i j}(0)-2 t f h_{i j}+O\left(t^{2}\right) \\
& =\sum_{k=1}^{2}\left(\delta_{i}^{k}-2 t f w_{i}^{k}+O\left(t^{2}\right)\right) g_{k j} .
\end{aligned}
$$

where $\left(h_{i j}\right)$ is the second fundamental form and $\left(w_{i}^{k}\right)$ is the Weingarten map of $u_{0} . \quad W_{p}=T_{p} F \rightarrow T_{p} F$ Recall Trace $(W)=2 H$.

Minimal Surfaces

In coordinates $\left(x_{1}, x_{2}\right) \in V$

$$
\begin{aligned}
g_{i j}(t) & :=\left\langle\frac{\partial u_{t}}{\partial x_{i}}, \frac{\partial u_{t}}{\partial x_{j}}\right\rangle \\
& =g_{i j}(0)+t\left(\frac{\partial f}{\partial x_{j}}\left\langle\frac{\partial u_{0}}{\partial x_{i}}, N\right\rangle+\frac{\partial f}{\partial x_{i}}\left\langle\frac{\partial u_{0}}{\partial x_{j}}, N\right\rangle\right) \\
& +t f\left(\left\langle\frac{\partial u_{0}}{\partial x_{i}}, \frac{\partial N}{\partial x_{j}}\right\rangle+\left\langle\frac{\partial u_{0}}{\partial x_{j}}, \frac{\partial N}{\partial x_{i}}\right\rangle\right)+O\left(t^{2}\right) \\
& =g_{i j}(0)-2 t f h_{i j}+O\left(t^{2}\right) \\
& =\sum_{k=1}^{2}\left(\delta_{i}^{k}-2 t f w_{i}^{k}+O\left(t^{2}\right)\right) g_{k j} .
\end{aligned}
$$

where $\left(h_{i j}\right)$ is the second fundamental form and $\left(w_{i}^{k}\right)$ is the Weingarten map of u_{0}.
Recall Trace $(W)=2 H$. Hence

$$
\begin{aligned}
\operatorname{det}\left(g_{i j}(t)\right) & =\operatorname{det}\left(g_{i j}(0)\left(1-2 t f \operatorname{Trace}\left(w_{i}^{k}\right)+O\left(t^{2}\right)\right)\right) \\
& \left.=\operatorname{det}\left(g_{i j}(0)\right)(1-4 t f H)\right)+6\left(t^{2}\right)
\end{aligned}
$$

Minimal Surfaces

$$
\left.\sqrt{1+t}=1+\frac{t}{2}+0 \in c^{2}\right)
$$

Thus

$$
\left.\frac{d}{d t}\right|_{t=0} \sqrt{\operatorname{det}\left(g_{i j}(t)\right.}=\sqrt{\operatorname{det}\left(g_{i j}(0)\right)}(-2 f H) .
$$

Minimal Surfaces

Thus

$$
\left.\frac{d}{d t}\right|_{t=0} \sqrt{\operatorname{det}\left(g_{i j}(t)\right.}=\sqrt{\operatorname{det}\left(g_{i j}(0)\right)(-2 f H)}
$$

Finally,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \operatorname{area}\left(u_{t}\right) & =-2 \int_{F} f H d\left(u_{0}(F)\right) \\
& -2 \int_{F}\langle f N, H N\rangle d\left(u_{0}(F)\right) \\
& =-2 \int_{F}\langle X, \mathcal{H}\rangle d\left(u_{0}(F)\right) \quad \square
\end{aligned}
$$

Lagrangian Mechanics

Let M be a smooth manifold (the configuration space). Let

$$
L: T M \times \mathbb{R} \rightarrow \mathbb{R}
$$

be a smooth function. If L is constant on \mathbb{R} it is called autonomous.

Lagrangian Mechanics

Let M be a smooth manifold (the configuration space). Let

$$
L: T M \times \mathbb{R} \rightarrow \mathbb{R}
$$

be a smooth function. If L is constant on \mathbb{R} it is called autonomous.

Examples: (i) $M=\mathbb{R}^{3}, L(x, v)=\frac{m}{2}\|v\|^{2}-V(x)$. V is the
 equation of motion is Newton's equation.

Lagrangian Mechanics

Let M be a smooth manifold (the configuration space). Let

$$
L: T M \times \mathbb{R} \rightarrow \mathbb{R}
$$

be a smooth function. If L is constant on \mathbb{R} it is called autonomous.

Examples: (i) $M=\mathbb{R}^{3}, L(x, v)=\frac{m}{2}\|v\|^{2}-V(x) . V$ is the potential energy $\frac{m}{\|v\|^{2}}$ is the kinetic energy of the system. The equation of motion is Newton's equation. $\dot{x} \in T_{\lambda} M$
(ii) Let (M, g) be a Riemannian manifold, $L(x, \dot{x}):=\frac{1}{2}\|\dot{x}\|_{g(x)}^{2}$ - is the system of a free mass point: no forces are acting on it. The equation of motion is the geodesic equation.

Lagrangian Mechanics

The state of a point mass at time t_{0} is dexribed by location and velocity: $\left(x_{0}, v_{0}\right)$. Its dynamics is described as the Extrema of the Lagrange functional: $\gamma:[a, b] \rightarrow M$

$$
\mathcal{L}(\gamma):=\int_{a}^{b} L(\gamma(t), \dot{\gamma}(t), t) d t
$$

among all differentiable curves $\gamma:[a, b] \rightarrow M$ with fixed endpoints $\gamma(a)=x_{0}$ and $\gamma(b)=x_{1}$.

Lagrangian Mechanics

The state of a point mass at time t_{0} is dexribed by location and velocity: $\left(x_{0}, v_{0}\right)$. Its dynamics is described as the Extrema of the Lagrange functional: $\gamma:[a, b] \rightarrow M$

$$
\mathcal{L}(\gamma):=\int_{a}^{b} L(\gamma(t), \dot{\gamma}(t), t) d t
$$

among all differentiable curves $\gamma:[a, b] \rightarrow M$ with fixed endpoints $\gamma(a)=x_{0}$ and $\gamma(b)=x_{1}$.

To describe its extremal points let ξ be a smooth vector field along γ which vanishes at $t=a, b$ and $\left\{\gamma_{\tau}:[a, b] \rightarrow M\right\}_{\tau \in(-\epsilon, \epsilon)}$ smooth family, $\gamma_{\tau}(a)=x_{0}$ and $\gamma_{\tau}(b)=x_{1}$ for all τ with

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \gamma_{\tau}=\xi
$$

Lagrangian Mechanics

We need to compute the first variation.
Lemma 83: There is an smooth section $X_{L, \gamma} \in \Gamma\left(\gamma^{*} T^{*} M\right)$ such that

$$
\left.\left.\frac{d}{d i}\right|_{T=0} \mathcal{L}\left(\gamma_{r}\right)\right)==d_{\gamma} \mathcal{L}(\xi)=\int_{a}^{b} X_{L, \gamma}(\xi)(t) d t
$$

for all smooth vectorfields ξ along γ.
The proof usually starts with the remark that it suffices to consider ξ with support in a coordinate neighbourhood of a chart (U, φ, V) of M (as we have done for minimal surfaces). In such coordinates one shows that

$$
X_{L, \gamma}(t)=\sum_{j=1}^{n}(\underbrace{\frac{\partial L}{\partial x_{j}}(\gamma(t), \dot{\gamma}(t), t)}-\frac{d}{d t}(\underbrace{\frac{\partial L}{\partial \dot{x}_{j}}(\gamma(t), \dot{\gamma}(t), t)})) d x^{j} .
$$

Lagrangian Mechanics

We need to compute the first variation.
Lemma 83: There is an smooth section $X_{L, \gamma} \in \Gamma\left(\gamma^{*} T^{*} M\right)$ such that
for all smooth vectorfields ξ along γ. E 有 h
The proof usually starts with the remark that it suffices to consider ξ with support in a coordinate neighbourhood of a chart (U, φ, V) of M (as we have done for minimal surfaces). In such coordinates one shows that
$T_{\gamma(t)}^{*} M \exists X_{L, \gamma}(t)=\sum_{j=1}^{n}\left(\frac{\partial L}{\partial x_{j}}(\gamma(t) \dot{\gamma}(t), t)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{j}}(\gamma(t), \dot{\gamma}(t), t)\right)\right) d x^{j}$.
Hence if γ is extremal it implies teheEuler-Lagrange equations which in local coordinates are given as

$$
\frac{\partial L}{\partial x_{j}}(\gamma(t) \dot{\gamma}(t), t)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{j}}(\gamma(t), \dot{\gamma}(t), t)\right)=0
$$

for all $j=1, \ldots, n$.

Lagrangian Mechanics
 $$
\frac{c_{n}}{n^{2}}\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)
$$

Examples: (1) $M=\mathbb{R}^{3}, L(x, v)=\frac{m}{2}\|v\|^{2}-V(x)(v=\dot{x})$. The Euler-Lagrange equations boil down to

$$
\frac{d}{d t}(m \dot{\gamma})=-\nabla V(\gamma(t))
$$

Newton's equations of classical mechanics.

Lagrangian Mechanics

Examples: (1) $M=\mathbb{R}^{3}, L(x, v)=\frac{m}{2}\|v\|^{2}-V(x)(v=\dot{x})$. The Euler-Lagrange equations boil down to

$$
\frac{d}{d t}(m \dot{\gamma})=-\nabla V(\gamma(t)),
$$

Newton's equations of classical mechanics.
(2) In local coordinates $L(x, \dot{x})=\frac{1}{2}\|\dot{x}\|_{g(x)}^{2}=\frac{1}{2} \sum_{i, j=1}^{n} g_{i j}(x) \dot{x}^{i} \dot{x}^{j}$.

Lagrangian Mechanics

Examples: (1) $M=\mathbb{R}^{3}, L(x, v)=\frac{m}{2}\|v\|^{2}-V(x)(v=\dot{x})$. The Euler-Lagrange equations boil down to

$$
\frac{d}{d t}(m \dot{\gamma})=-\nabla V(\gamma(t))
$$

Newton's equations of classical mechanics.
(2) In local coordinates $L(x, \dot{x})=\frac{1}{2}\|\dot{x}\|_{g(x)}^{2}=\frac{1}{2} \sum_{i, j=1}^{n} g_{i j}(x) \dot{x}^{i} \dot{x}^{j}$.

Hence the Euler-Lagrange-equations become

$$
\sum_{i j=1}^{n} \frac{\partial g_{i j}}{\partial x_{k}}(\gamma(t)) \dot{\gamma}_{i}(t) \dot{\gamma}_{j}(t)-2 \frac{d}{d t}\left(g_{i j}(\gamma(t)) \dot{\gamma}_{j}(t)\right)=0
$$

for all $k=1, \ldots, n$, i.e. the geodesic equations!" $\ddot{\gamma}_{k}(t)=\sum \Gamma_{i j}^{k} \dot{\gamma}_{i} \dot{\gamma}_{j}^{\prime}$

Lagrangian Mechanics

Examples: (1) $M=\mathbb{R}^{3}, L(x, v)=\frac{m}{2}\|v\|^{2}-V(x)(v=\dot{x})$. The Euler-Lagrange equations boil down to

$$
\frac{d}{d t}(m \dot{\gamma})=-\nabla V(\gamma(t))
$$

Newton's equations of classical mechanics.
(2) In local coordinates $L(x, \dot{x})=\frac{1}{2}\|\dot{x}\|_{g(x)}^{2}=\frac{1}{2} \sum_{i, j=1}^{n} g_{i j}(x) \dot{x}^{i} \dot{x}^{j}$.

Hence the Euler-Lagrange-equations become

$$
\sum_{i j=1}^{n} \frac{\partial g_{i j}}{\partial x_{k}}(\gamma(t)) \dot{\gamma}_{i}(t) \dot{\gamma}_{j}(t)-2 \frac{d}{d t} g_{i j}(\gamma(t)) \dot{\gamma}_{j}(t)=0
$$

for all $k=1, \ldots, n$, i.e. the geodesic equations!
A global formulation is given by

$$
\left(\nabla_{\dot{\gamma}} \dot{\gamma}=\right) \nabla_{\frac{d}{d t}}^{\gamma} \dot{\gamma}=0
$$

The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:

$$
\begin{aligned}
d_{\gamma} \mathcal{L}(\xi) & =\left.\frac{d}{d \tau}\right|_{\tau=0} \int_{a}^{b} L\left(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t\right) d t \\
& =\left.\int_{a}^{b} \frac{d}{d \tau}\right|_{\tau=0} L\left(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t\right) d t \\
& =\int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) d t
\end{aligned}
$$

where $L_{t}: T M \times \mathbb{R} \rightarrow \mathbb{R}$ is $L_{t}(x, v):=L(x, v, t)$.

The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:

$$
\begin{aligned}
d_{\gamma} \mathcal{L}(\xi) & =\left.\frac{d}{d \tau}\right|_{\tau=0} \int_{a}^{b} L\left(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t\right) d t \\
& =\left.\int_{a}^{b} \frac{d}{d \tau}\right|_{\tau=0} L\left(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t\right) d t \\
& =\int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) d t
\end{aligned}
$$

where $L_{t}: T M \times \mathbb{R} \rightarrow \mathbb{R}$ is $L_{t}(x, v):=L(x, v, t)$. What is

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t) \in T_{(\gamma(t), \dot{\gamma}(t))} T M \quad ?
$$

The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:

$$
\begin{aligned}
d_{\gamma} \mathcal{L}(\xi) & =\left.\frac{d}{d \tau}\right|_{\tau=0} \int_{a}^{b} L\left(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t\right) d t \\
& =\left.\int_{a}^{b} \frac{d}{d \tau}\right|_{\tau=0} L\left(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t\right) d t \\
& =\int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) d t
\end{aligned}
$$

where $L_{t}: T M \times \mathbb{R} \rightarrow \mathbb{R}$ is $L_{t}(x, v):=L(x, v, t)$. What is

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t) \in T_{(\gamma(t), \dot{\gamma}(t))} T M \quad ?
$$

Fix a connection ∇ on $T M \xrightarrow{\pi} M$. Recall for the smooth map $\pi: T M \rightarrow M$
$d_{(\gamma(t), \dot{\gamma}(t)} \pi\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right)=\left.\frac{d}{d \tau}\right|_{\tau=0}\left(\pi\left(\dot{\gamma}_{\tau}(t)\right)\right)=\left.\frac{d}{d \tau}\right|_{\tau=0} \gamma_{\tau}(t)=\xi(t)$.

The Euler-Lagrange Equations

With the isomorphism $\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}: T_{\gamma(t)} M \rightarrow T_{(\gamma(t), \dot{\gamma}(t))}^{h} T M$

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)-\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))=\nabla_{\frac{d}{d t}}^{\gamma} \xi(t) .
$$

The Euler-Lagrange Equations

With the isomorphism $\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}: T_{\gamma(t)} M \rightarrow T_{(\gamma(t), \dot{\gamma}(t))}^{h} T M$

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)-\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))=\nabla_{\frac{d}{d t}}^{\gamma} \xi(t) .
$$

We get

$$
\begin{aligned}
& d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) \\
& \left.=d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))\right)+d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right)
\end{aligned}
$$

The Euler-Lagrange Equations

With the isomorphism $\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}: T_{\gamma(t)} M \rightarrow T_{(\gamma(t), \dot{\gamma}(t))}^{h} T M$

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)-\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))=\nabla_{\frac{d}{d t}}^{\gamma} \xi(t) .
$$

We get

$$
\begin{aligned}
& d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) \\
& \left.=d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))\right)+d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right)
\end{aligned}
$$

We identified $T_{(x, v)}\left(T_{x} M\right) \cong T_{x} M$.

The Euler-Lagrange Equations

With the isomorphism $\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}: T_{\gamma(t)} M \rightarrow T_{(\gamma(t), \dot{\gamma}(t))}^{h} T M$

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)-\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))=\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)
$$

We get

$$
\begin{aligned}
& d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) \\
& \left.=d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))\right)+d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right)
\end{aligned}
$$

We identified $T_{(x, v)}\left(T_{x} M\right) \cong T_{x} M$.
Partial integration yields

$$
\int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right) d t=-\int_{a}^{b} \nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}\right)(\xi(t)) d t
$$

The Euler-Lagrange Equations

With the isomorphism $\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}: T_{\gamma(t)} M \rightarrow T_{(\gamma(t), \dot{\gamma}(t))}^{h} T M$

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)-\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))=\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)
$$

We get

$$
\begin{aligned}
& d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) \\
& \left.=d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))\right)+d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right)
\end{aligned}
$$

We identified $T_{(x, v)}\left(T_{x} M\right) \cong T_{x} M$.
Partial integration yields

$$
\int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right) d t=-\int_{a}^{b} \nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}\right)(\xi(t)) d t
$$

where $d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}=\left.d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\right|_{T_{(\gamma(t), \dot{\gamma}(t))}\left(T_{\gamma(t)} M\right)} \in T_{\gamma(t)}^{*} M$,

The Euler-Lagrange Equations

With the isomorphism $\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}: T_{\gamma(t)} M \rightarrow T_{(\gamma(t), \dot{\gamma}(t))}^{h} T M$

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)-\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))=\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)
$$

We get

$$
\begin{aligned}
& d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\left.\frac{d}{d \tau}\right|_{\tau=0} \dot{\gamma}_{\tau}(t)\right) \\
& \left.=d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}(\xi(t))\right)+d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right)
\end{aligned}
$$

We identified $T_{(x, v)}\left(T_{x} M\right) \cong T_{x} M$.
Partial integration yields

$$
\int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\left(\nabla_{\frac{d}{d t}}^{\gamma} \xi(t)\right) d t=-\int_{a}^{b} \nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}\right)(\xi(t)) d t
$$

where $d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}=\left.d_{(\gamma(t), \dot{\gamma}(t))} L_{t}\right|_{T_{(\gamma(t), \dot{\gamma}(t))}\left(T_{\gamma(t)} M\right)} \in T_{\gamma(t)}^{*} M$, the covariant derivative applied to it is the one induced by ∇^{γ} and we make use of $\xi(a)=\xi(b)=0$.

The Euler-Lagrange Equations

We end up with
$d_{\gamma} \mathcal{L}(\xi)=\int_{a}^{b}\left(d_{(\gamma(t), \dot{\gamma}(t))} L_{t} \circ\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}-\nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}\right)\right)(\xi(t)) d t$
which has to vanish for all ξ.

The Euler-Lagrange Equations

We end up with

$$
d_{\gamma} \mathcal{L}(\xi)=\int_{a}^{b}\left(d_{(\gamma(t), \dot{\gamma}(t))} L_{t} \circ\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}-\nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}\right)\right)(\xi(t)) d t
$$

which has to vanish for all ξ.
Proposition 84: An extremal path $\gamma:[a, b] \rightarrow M$ in the space of all such maps with the same endpoints $\gamma(a)=x_{0}$ and $\gamma(b)=x_{1}$ satisfies the Euler-Lagrange equations

$$
d_{(\gamma(t), \dot{\gamma}(t))} L_{t} \circ\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}-\nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{\vee} L_{t}\right)=0 .
$$

The Euler-Lagrange Equations

We end up with

$$
d_{\gamma} \mathcal{L}(\xi)=\int_{a}^{b}\left(d_{(\gamma(t), \dot{\gamma}(t))} L_{t} \circ\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}-\nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{v} L_{t}\right)\right)(\xi(t)) d t
$$

which has to vanish for all ξ.
Proposition 84: An extremal path $\gamma:[a, b] \rightarrow M$ in the space of all such maps with the same endpoints $\gamma(a)=x_{0}$ and $\gamma(b)=x_{1}$ satisfies the Euler-Lagrange equations

$$
d_{(\gamma(t), \dot{\gamma}(t))} L_{t} \circ\left(d_{(\gamma(t), \dot{\gamma}(t)} \pi\right)^{-1}-\nabla_{\frac{d}{d t}}^{\gamma}\left(d_{(\gamma(t), \dot{\gamma}(t))}^{\vee} L_{t}\right)=0 .
$$

Remark: Notice: Both terms depend on the auxilary connection ∇ chosen, their difference, however, does not. (Exercise: Show this directly without referring to the fact that these equations describe the critical points of a functional which is defined without reference to ∇)

