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Minimal Surfaces
Let C ⊂ R3 be a disjoint union of k simple closed curves. Let F be
compact surface with k boundary components.

Consider the functional

u ∈ B := {u : F → R3|u immersion, u|∂F : ∂F → C diffeo }
7→ area(u) ∈ (0,∞)

For a smooth family {ut}t∈(−ε,ε) ⊂ B, ε > 0

X := d
dt

∣∣∣
t=0

ut : F → R3

is a vector field along u0 with Xp ∈ TpC for all p ∈ ∂F .

Proposition 82: With the notation as above
d
dt

∣∣∣
t=0

area(ut) = −2
∫

F
〈X ,H〉d(u0(F ))

where d(u0(F )) is the area measure of u0(F ) and H its mean
curvature vector.
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Minimal Surfaces
In particular, if u0 is minimal, then

H ≡ 0.

Remark: Immersed surfaces with H ≡ 0 are called minimal
surfaces - even if they have infinite area.

Proof: (i) Notice for all p

ut(p) = u0(p) + tXp + O(t, p)

where ∂tO(t, p)|t=0 = 0. First fundamental form depends
smoothly on t.
For ũu = u0 + tX for t small

d
dt

∣∣∣
t=0

(area(ut)− area(ũt)) = 0.

Replace u by u = u0 + tX .
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Minimal Surfaces
(ii) Let X1,X2 be two vector fields along u0 as above. Then by
chain rule
d
dt

∣∣∣
t=0

area(u0+t(X1+X2)) = d
dt

∣∣∣
t=0

area(u0+tX1)+ d
dt

∣∣∣
t=0

area(u0+tX2).

(iii) Let Xp = XT
p + XN

p such that XT
p = dpu0(ξ) for ξ ∈ TpF and

XN ⊥ dpu0(TpF ) the splitting into tangent and normal part.
XN ,XT are smooth vector fields along u0.
ξ is a vector field on F , ξp ∈ T (∂F ) for p ∈ ∂F .
Hence its flow Φt : F → F is defined and a diffeomorphism.

d
dt

∣∣∣
t=0

u0 ◦ Φt = du0(ξ) = XT

and
d
dt

∣∣∣
t=0

area(u0 + tXT ) = d
dt

∣∣∣
t=0

area(u0 ◦ Φt) = 0.
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Minimal Surfaces

Hence

d
dt

∣∣∣
t=0

area(u0 + tX ) = d
dt

∣∣∣
t=0

area(u0 + tXN).

From now on, assume Xp ⊥ dp(TpF ).

(iv) Using partition of unity we xan write X = X1 + X2 + ...+ Xk
where supp(Xj) ⊂ Uj for a coordinate neighbourhood Uj of F .
Thus, suppose supp(X ) ⊂ U, (U, ϕ,V ) coordinate chart of F . Let
N be the unit normal field and

X = fN

for f : U → R.
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Minimal Surfaces
In coordinates (x1, x2) ∈ V

gij(t) := 〈∂ut
∂xi

,
∂ut
∂xj
〉

= gij(0) + t
( ∂f
∂xj
〈∂u0
∂xi

,N〉+ ∂f
∂xi
〈∂u0
∂xj

,N〉
)

+ tf
(
〈∂u0
∂xi

,
∂N
∂xj
〉+ 〈∂u0

∂xj
,
∂N
∂xi
〉
)

+ O(t2)

= gij(0)− 2tfhij + O(t2)

=
2∑

k=1
(δk

i − 2tfwk
i + O(t2))gkj .

where (hij) is the second fundamental form and (wk
i ) is the

Weingarten map of u0.

Recall Trace(W ) = 2H. Hence
det(gij(t)) = det(gij(0)(1− 2tf Trace(wk

i ) + O(t2)))
= det(gij(0))(1− 4tfH)).
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Minimal Surfaces
Thus

d
dt

∣∣∣
t=0

√
det(gij(t) =

√
det(gij(0))(−2fH).

Finally,

d
dt

∣∣∣
t=0

area(ut) = −2
∫

F
fHd(u0(F ))

− 2
∫

F
〈fN,HN〉d(u0(F ))

= −2
∫

F
〈X ,H〉d(u0(F )) �
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Lagrangian Mechanics

Let M be a smooth manifold (the configuration space). Let

L : TM × R→ R

be a smooth function. If L is constant on R it is called
autonomous.

Examples: (i) M = R3, L(x , v) = m
2 ‖v‖

2 − V (x). V is the
potential energy m

‖v‖2 is the kinetic energy of the system. The
equation of motion is Newton’s equation.
(ii) Let (M, g) be a Riemannian manifold, L(x , ẋ) := 1

2‖ẋ‖
2
g(x)- is

the system of a free mass point: no forces are acting on it. The
equation of motion is the geodesic equation.
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Lagrangian Mechanics

The state of a point mass at time t0 is dexribed by location and
velocity: (x0, v0). Its dynamics is described as the Extrema of the
Lagrange functional: γ : [a, b]→ M

L(γ) :=
∫ b

a
L(γ(t), γ̇(t), t)dt.

among all differentiable curves γ : [a, b]→ M with fixed endpoints
γ(a) = x0 and γ(b) = x1.

To describe its extremal points let ξ be a smooth vector field along
γ which vanishes at t = a, b and {γτ : [a, b]→ M}τ∈(−ε,ε) smooth
family, γτ (a) = x0 and γτ (b) = x1 for all τ with

d
dτ

∣∣∣
τ=0

γτ = ξ.
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Lagrangian Mechanics
We need to compute the first variation.
Lemma 83: There is an smooth section XL,γ ∈ Γ(γ∗T ∗M) such
that

dγL(ξ) =
∫ b

a
XL,γ(ξ)(t)dt.

for all smooth vectorfields ξ along γ.
The proof usually starts with the remark that it suffices to consider
ξ with support in a coordinate neighbourhood of a chart (U, ϕ,V )
of M (as we have done for minimal surfaces). In such coordinates
one shows that

XL,γ(t) =
n∑

j=1

( ∂L
∂xj

(γ(t)γ̇(t), t)− d
dt ( ∂L

∂ẋj
(γ(t), γ̇(t), t))

)
dx j .

Hence if γ is extremal it implies teh Euler-Lagrange equations
which in local coordinates are given as

∂L
∂xj

(γ(t)γ̇(t), t)− d
dt ( ∂L

∂ẋj
(γ(t), γ̇(t), t)) = 0

for all j = 1, ..., n.
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∂ẋj
(γ(t), γ̇(t), t))

)
dx j .

Hence if γ is extremal it implies teh Euler-Lagrange equations
which in local coordinates are given as

∂L
∂xj

(γ(t)γ̇(t), t)− d
dt ( ∂L

∂ẋj
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Lagrangian Mechanics
Examples: (1) M = R3, L(x , v) = m

2 ‖v‖
2 − V (x) (v = ẋ). The

Euler-Lagrange equations boil down to

d
dt (mγ̇) = −∇V (γ(t)),

Newton’s equations of classical mechanics.

(2) In local coordinates L(x , ẋ) = 1
2‖ẋ‖

2
g(x) = 1

2
∑n

i ,j=1 gij(x)ẋ i ẋ j .
Hence the Euler-Lagrange-equations become

n∑
ij=1

∂gij
∂xk
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2‖ẋ‖

2
g(x) = 1

2
∑n

i ,j=1 gij(x)ẋ i ẋ j .
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The Euler-Lagrange Equations
We derive a global formulation of general
Euler-Lagrange-equations. We have:

dγL(ξ) = d
dτ

∣∣∣
τ=0

∫ b

a
L(γτ (t), γ̇τ (t), t)dt

=
∫ b

a

d
dτ

∣∣∣
τ=0

L(γτ (t), γ̇τ (t), t)dt

=
∫ b

a
d(γ(t),γ̇(t))Lt( d

dτ

∣∣∣
τ=0

γ̇τ (t))dt.

where Lt : TM × R→ R is Lt(x , v) := L(x , v , t).

What is

d
dτ

∣∣∣
τ=0

γ̇τ (t) ∈ T(γ(t),γ̇(t))TM ?

Fix a connection ∇ on TM π→ M. Recall for the smooth map
π : TM → M

d(γ(t),γ̇(t)π( d
dτ

∣∣∣
τ=0

γ̇τ (t)) = d
dτ

∣∣∣
τ=0

(π(γ̇τ (t))) = d
dτ

∣∣∣
τ=0

γτ (t) = ξ(t).
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The Euler-Lagrange Equations
With the isomorphism (d(γ(t),γ̇(t)π)−1 : Tγ(t)M → T h

(γ(t),γ̇(t))TM

d
dτ

∣∣∣
τ=0

γ̇τ (t)− (d(γ(t),γ̇(t)π)−1(ξ(t)) = ∇γd
dt
ξ(t).

We get

d(γ(t),γ̇(t))Lt( d
dτ

∣∣∣
τ=0

γ̇τ (t))

= d(γ(t),γ̇(t))Lt(d(γ(t),γ̇(t)π)−1(ξ(t))) + d(γ(t),γ̇(t))Lt(∇γd
dt
ξ(t)).

We identified T(x ,v)(TxM) ∼= TxM.

Partial integration yields∫ b

a
d(γ(t),γ̇(t))Lt(∇γd

dt
ξ(t))dt = −

∫ b

a
∇γd

dt
(dv

(γ(t),γ̇(t))Lt)(ξ(t))dt,

where dv
(γ(t),γ̇(t))Lt = d(γ(t),γ̇(t))Lt

∣∣∣
T(γ(t),γ̇(t))(Tγ(t)M)

∈ T ∗γ(t)M, the

covariant derivative applied to it is the one induced by ∇γ and we
make use of ξ(a) = ξ(b) = 0.
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The Euler-Lagrange Equations
We end up with

dγL(ξ) =
∫ b

a

(
d(γ(t),γ̇(t))Lt◦(d(γ(t),γ̇(t)π)−1−∇γd

dt
(dv

(γ(t),γ̇(t))Lt)
)

(ξ(t))dt

which has to vanish for all ξ.

Proposition 84: An extremal path γ : [a, b]→ M in the space of
all such maps with the same endpoints γ(a) = x0 and γ(b) = x1
satisfies the Euler-Lagrange equations

d(γ(t),γ̇(t))Lt ◦ (d(γ(t),γ̇(t)π)−1 −∇γd
dt

(dv
(γ(t),γ̇(t))Lt) = 0.

Remark: Notice: Both terms depend on the auxilary connection
∇ chosen, their difference, however, does not. (Exercise: Show this
directly without referring to the fact that these equations describe
the critical points of a functional which is defined without
reference to ∇)
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