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Rules for Usage of ZOOM (suject to adjustments)

I switch off your microphones - switch them on while speaking
only

I I might ask you to switch off your cameras (if data connection
is weak)

I I will regularly pause for questions
I use ”raising hand” and comment functions – also if you

encounter problems!
I classes will not be recorded
I annotated slides are posted after classes



Organization of Lectures and Tutorials

I information will be given on Moodle and on my homepage
(please, see both at the start)

I slides will be posted prior to lectures (if ready)
I no grading of homework but prepare them as if
I your solutions and questions will be discussed in tutorials
I office hours: write me an email for an appointment via Skype
I if you cannot skype I can call you under a number you provide
I We will use a whiteboard application for tutorials (certainly

via try and error)



Contents of the Class

The new heroes of this class will be differential forms. They will
appear in each chapter of this class, such as
I Stokes Theorem
I de Rham Cohomology
I connections on vector bundles and their curvature
I symplectic geometry

Let’s begin....



Algebraic Preliminiaries

Some of it you might know already...

Definition 1: (1) Let V be a real vector space. A k–linear form
is a map

α : V k −→ R

which is linear in each component:

α(v1, ..., v ′`+λv ′′` , ..., vk) = α(v1, ..., v ′`, ..., vk)+λα(v1, ..., v ′′` , ..., vk).

for all v1, ..., v ′`, v ′′` , ..., vk ∈ V and λ ∈ R.
One denotes the set of all such k–linear forms by

T k(V ∗),T 0,k(V ),V ∗ ⊗ V ∗ ⊗ ...⊗ V ∗, (V ∗)⊗k

to name a few.



(2) A k–linear form α is called symmetric or antisymmetric if for
every permutation σ ∈ Sk of {1; 2; ...; k} we have

α(vσ(1), ..., vσ(k)) = α(v1, ..., vk)

and
α(vσ(1), ..., vσ(k)) = (−1)σα(v1, ..., vk),

respectively.
The set of antisymmetric k–linear forms are called exterior
k–forms (and often later on just k–forms, when there should be
no confusion with k–linear forms). It is denoted by Λk(V ∗). For
convenience, for k > dimV or k < 0 we set this space to be the
trivial vector space.



Examples:
(1) A euclidean metric on a real vector space V is a symmetric
bilinear form.
(2) Let V := Rn be the standard vector space of column vectors.
The determinant

det : Rn × ...× Rn → R,

where one forms a n× n–matrix by the given n elements of Rn and
takes its determinant, is an exterior n–form of Rn.

Theorem 2: Λk(V ∗) is a real vector space. If dimV = n then
the dimension is given by

dim(Λk(V ∗)) =
(

n
k

)



Proof of Theorem 2:

Pick a basis {v1, ..., vn} of V . There are
(n

k
)
subsets of {1; ...; n}

containing exactly k elements. The elements of each subset I will
be ordered I = {1 ≤ i1 < i2 < ... < ik ≤ n} and the subsets will be
lexicographically ordered I1, I2, ..., I(n

k). Hence we define a linear
map

Φ : Λk(V ∗) −→ R(n
k)

where the `-th component of Φ(α) is given by

Φ(α)` = α(vi`1 , vi`2 , ..., vi`k )

with I` = {1 ≤ i`1 < i`2 < ... < i`k ≤ n}. Claim: Φ is an

isomorphism.



Injectivity of Φ

Assume Φ(α) = 0.
Pick any tupel w1, ...,wk ∈ V .

wi =
n∑

j=1
λijvj

Then

α(w1, ...,wk) =
n∑

j1,j2,...,jk=1
λ1j1λ2j2 ...λkjkα(vj1 , vj2 , ..., vjk )

=
∑

I
cIΦ(α)I = 0

where the last sum is over all k–element subsets of {1; 2; ...; n}.

Hence α = 0.



Surjectivity of Φ

Let I = {1 ≤ i1 < i2 < ... < ik ≤ n} be an k–element ordered
subset of {1, ..., n}. We define αI ∈ Λk(V )

αI(vj1 , ..., vjk ) =
{
0 if {j1; ...; jk} 6= {i1; ...; ik}
(−1)σ for σ ∈ Sk with j` = iσ(`).

extending it linearily in each component.
Then Φ(αI) = e` with I` = I.

Hence Φ is surjective. �



The Wedge–Product
For α ∈ Λk(V ) and β ∈ Λ`(V ) we define α ∧ β ∈ Λk+`(V ) via

α ∧ β(w1, ...wk+`)

:= 1
k!`!

∑
σ∈Sk+`

(−1)σα(wσ(1), ...wσ(k))β(wσ(k+1), ...wσ(k+`)).

Theorem 3: The wedge–product turns

Λ∗(V ) := ⊕n
k=0Λk(V ).

into a graded commutative algebra over R.

An algebra is a vector space with a (linear) ring structure, graded
algebra refers to α∧ β ∈ Λk+`(V ) for α, β as given above, graded
commutative means that

α ∧ β = (−1)k`β ∧ α.

The wedge-product is sometimes also called exterior product



Proof of Theorem 3:

We will only deal with the associativity. Check the other properties!
For α ∈ Λk(V ), β ∈ Λ`(V ), γ ∈ Λm(V ) we define
µ(α, β, γ) ∈ Λk+`+m(V ) via

µ(α, β, γ)(w1, ...,wk+`+m)

= 1
k!`!m!

∑
σ∈Sk+`+m

(−1)σα(wσ(1), ...,wσ(k))β(wσ(k+1), ...,wσ(k+`))×

× γ(wσ(k+`+1), ...,wσ(k+`+m)).

Claim: (α ∧ β) ∧ γ = µ(α, β, γ) = α ∧ (β ∧ γ)



Proof of Theorem 3:

(α ∧ β) ∧ γ(w1, ...,wk+`+m)

= 1
(k + `)!m!

∑
σ∈Sk+`+m

(−1)σ(α ∧ β)(wσ(1), ...,wσ(k+`))×

× γ(wσ(k+`+1), ...,wσ(k+`+m))

= 1
(k + `)!m!

∑
σ∈Sk+`+m

(−1)σ 1
k!`!

∑
τ∈Sk+`

(−1)τα(wσ(τ(1)), ...wσ(τ(k)))×

× β(wσ(τ(k+1)), ...wσ(τ(k+`)))×
× γ(wσ(k+`+1), ...,wσ(k+`+m))

= 1
k!`!m!

∑
τ∈Sk+`

1
(k + `)!

∑
σ∈Sk+`+m

(−1)σ(−1)τα(wσ(τ(1)), ...wσ(τ(k)))×

× β(wσ(τ(k+1)), ...wσ(τ(k+`)))×
× γ(wσ(k+`+1), ...,wσ(k+`+m))



Proof of Theorem 3:

= 1
k!`!m!

∑
τ∈Sk+`

1
(k + `)!

∑
σ∈Sk+`+m

(−1)σ◦τα(wσ(τ(1)), ...wσ(τ(k)))×

× β(wσ(τ(k+1)), ...wσ(τ(k+`)))×
× γ(wσ(k+`+1), ...,wσ(k+`+m))

= 1
k!`!m!

∑
τ∈Sk+`

1
(k + `)!

∑
σ∈Sk+`+m

(−1)σα(wσ(1), ...wσ(k))×

× β(wσ(k+1), ...wσ(k+`))×
× γ(wσ(k+`+1), ...,wσ(k+`+m))

= µ(α, β, γ)(w1, ...,wk+`+m)

The second equality is proved likewise. �



A Basis of Λk(V ∗)

Proposition 4: Let {v1, ..., vn} be a basis of the vector spave V
and denote by α1, ..., αn} its dual basis of V ∗. Then the elements
of the basis {αI | I = {1 ≤ i1 < i2 < ... < ik}} of Λk(V ∗) in the
proof of Theorem 2 are given by

αi1i2...ik = αi1 ∧ αi2 ∧ ... ∧ αik .

Proof: It suffices to show that the right hand side evaluated on the
k–tupel (vj1 , vj2 , ..., vjk ) ∈ V k is equal to the left hand side. Now

αi1 ∧ αi2 ∧ ... ∧ αik (vj1 , vj2 , ..., vjk )
=
∑
σ∈Sk

(−1)σαi1(vjσ(1))αi2(vjσ(2))...αik (vjσ(k))

The indices jk have to be pairwise distinct, since αi1 ∧αi2 ∧ ...∧αik
is antisymmetric by definition.



Proof of Proposition 4:

If the sets {i1, i2, ..., ik} 6= {j1, j2, ..., jk} at least for one ` we have
i` 6= jσ(`), therefore αi`(vjσ(`) = 0 and hence the whole product
vanishes. Since this holds for all σ we have established the
vanishing of the right hand side if {i1, i2, ..., ik} 6= {j1, j2, ..., jk}.

Finally, if {i1, i2, ..., ik} 6= {j1, j2, ..., jk} there is (exactly one)
permutation σ ∈ Sk such that for all ` we have i` = jσ(`) and thus
αi`(vjσ(`)) = 1. For all other permutations the corresponding
summand hence vanishes and the only summand surviving gives
rise to

αi1 ∧ αi2 ∧ ... ∧ αik (vj1 , vj2 , ..., vjk ) = (−1)σ. �



Pull-back and Interior product

Let F : V →W be a linear map between real vector spaces V and
W . Then the pull-back of an exterior k–form α ∈ Λk(W ∗) is the
exterior k–form F ∗α ∈ Λk(V ∗) defined by

F ∗α(v1, ..., vk) = α(F (v1), ...,F (vk)).

Let α ∈ Λk(V ∗) be an exterior k–form and v ∈ V a vector. The
interior product of v with α is the (k − 1)–form vyα ∈ Λk−1(V ∗)
defined by

(vyα)(v1, ..., vk−1) = α(v , v1, ..., vk−1).



Pull-back and Interior Product

Proposition 5: (1) The pull-back F ∗ : Λk(W ∗)→ Λk(V ∗) is a
linear map.
(2) The map V × Λk(V ∗)→ Λk−1(V ∗) given by (v , α) 7→ vyα is a
bilinear map.
(3) We have the following relations

for v ,w ∈ V , α ∈ Λk(V ∗) :
vy(wyα) = −wy(vyα)

for v ∈ V , α ∈ Λk(V ∗), β ∈ Λ`(V ∗) :
vy(α ∧ β) = (vyα) ∧ β + (−1)kα ∧ (vyβ)

for F : V →W linear, v ∈ V , α ∈ Λk(V ∗) :
vy(F ∗α) = F ∗(F (v)yα).

Proof: Exercise



Scalar product on Λk(V ∗)

Let V be an oriented, euclidean vector space. The scalar product
induces a scalar product on antisymmetric k–forms: For
α, β ∈ Λk(V ∗) we define

〈α, β〉 :=
∑

I={1≤i1<i2<...<ik}
α(vi1 , ..., vik )β(vi1 , ..., vik )

where {v1, ..., vn} is an orthonormal basis of V . This definition
does not depend on the orthonormal basis. Moreover, the basis
induced by that orthonormal basis, {αI}I={1≤i1<i2<...<ik} is an
orthonormal basis of Λk(V ∗) (Check this!).



The Volume Form
Assume that {v1, ..., vn} is an n–dimensional, oriented orthonormal
basis. The volume form, dV ∈ Λn, of an oriented, euclidean
vector space V is defined via

dV (w1, ...,wn) := det

〈w1, v1〉 ... 〈w1, vn〉
... . . . ...

〈wn, v1〉 ... 〈wn, vn〉

 .
Lemma 6: (1) The definition of dV is independent of the choice
of an oriented orthonormal basis.

(2) It has length one: 〈dV , dV 〉 = 1 and Λn(V ) = RdV .

(3) For the dual basis {α1, ..., αn} of a oriented orthonormal basis
as above we have

dV = α1 ∧ ... ∧ αn.

Proof: Exercise



The Hodge-∗-Operator

Recall that the linear map

α ∈ Λk(V ∗) 7→ 〈α, .〉 ∈ (Λk(V ∗))∗

is an isomorhism since 〈., .〉 is non-degenerate.

On the other hand for a given α ∈ Λk(V ∗)

β ∈ Λn−k(V ∗) 7→ α ∧ β
dV ∈ R

defines an element in (Λn−k(V ∗))∗. Its image under the inverse of
the above isomorphism is a (n − k)–form, called the Hodge dual
of α and denoted by ∗α ∈ Λn−k(V ∗).



The Hodge-∗-Operator

Lemma 7: (1) The map

∗ : Λk(V ∗) −→ Λn−k(V ∗)

is an isometry which is referred to as Hodge-∗-operator.
(2) On k–forms ∗2 = ∗ ◦ ∗ = (−1)k(n−k).
(3) For α, β ∈ Λk(V ∗) we have

α ∧ ∗β = 〈α, β〉dV .



Proof of Lemma 7:



Proof of Lemma 7:



Proof of Lemma 7:


