Differential Geometry II

Klaus Mohnke

April 21, 2020

Rules for Usage of ZOOM (suject to adjustments)

- switch off your microphones - switch them on while speaking only
- I might ask you to switch off your cameras (if data connection is weak)
- I will regularly pause for questions
- use "raising hand" and comment functions - also if you encounter problems!
- classes will not be recorded
- annotated slides are posted after classes

Organization of Lectures and Tutorials

- information will be given on Moodle and on my homepage (please, see both at the start)
- slides will be posted prior to lectures (if ready)
- no grading of homework but prepare them as if
- your solutions and questions will be discussed in tutorials
- office hours: write me an email for an appointment via Skype
- if you cannot skype I can call you under a number you provide
- We will use a whiteboard application for tutorials (certainly via try and error)

Contents of the Class

The new heroes of this class will be differential forms. They will appear in each chapter of this class, such as

- Stokes Theorem
- de Rham Cohomology
- connections on vector bundles and their curvature
- symplectic geometry

Let's begin....

Algebraic Preliminiaries

Some of it you might know already...
Definition 1: (1) Let V be a real vector space. A k-linear form is a map

$$
\alpha: V^{k} \longrightarrow \mathbb{R}
$$

which is linear in each component:
$\alpha\left(v_{1}, \ldots, \underline{v_{\ell}^{\prime}+\lambda v_{\ell}^{\prime \prime}}, \ldots, v_{k}\right)=\alpha\left(v_{1}, \ldots, \underline{v_{\ell}^{\prime}}, \ldots, v_{k}\right)+\lambda \alpha\left(v_{1}, \ldots, \underline{v_{\ell}^{\prime \prime}}, \ldots, v_{k}\right)$.
for all $v_{1}, \ldots, v_{\ell}^{\prime}, v_{\ell}^{\prime \prime}, \ldots, v_{k} \in V$ and $\lambda \in \mathbb{R}$.
One denotes the set of all such k-linear forms by

$$
T^{k}\left(V^{*}\right), T^{0, k}(V), V^{*} \otimes V^{*} \otimes \ldots \otimes V^{*},\left(V^{*}\right)^{\otimes k}
$$

to name a few.
(2) A k-linear form α is called symmetric or antisymmetric if for every permutation $\sigma \in S_{k}$ of $\{1 ; 2 ; \ldots ; k\}$ we have

$$
\alpha\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=\alpha\left(v_{1}, \ldots, v_{k}\right)
$$

and

$$
\alpha\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=(-1)^{\sigma} \alpha\left(v_{1}, \ldots, v_{k}\right),
$$

respectively.
The set of antisymmetric k-linear forms are called exterior k-forms (and often later on just k-forms, when there should be no confusion with k-linear forms). It is denoted by $\Lambda^{k}\left(V^{*}\right)$. For convenience, for $k>\operatorname{dim} V$ or $k<0$ we set this space to be the trivial vector space.

Examples:

(1) A euclidean metric on a real vector space V is a symmetric bilinear form.
(2) Let $V:=\mathbb{R}^{n}$ be the standard vector space of column vectors.

The determinant

$$
\operatorname{det}: \underbrace{\mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n}}_{n} \rightarrow \mathbb{R}
$$

where one forms a $n \times n$-matrix by the given n elements of \mathbb{R}^{n} and takes its determinant, is an exterior n-form of \mathbb{R}^{n}.

Theorem 2: $\quad \Lambda^{k}\left(V^{*}\right)$ is a real vector space. If $\operatorname{dim} V=n$ then the dimension is given by

$$
\operatorname{dim}\left(\Lambda^{k}\left(V^{*}\right)\right)=\binom{n}{k}
$$

Proof of Theorem 2:

Pick a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V. There are $\binom{n}{k}$ subsets of $\{1 ; \ldots ; n\}$ containing exactly k elements. The elements of each subset $/$ will be ordered $I=\left\{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n\right\}$ and the subsets will be lexicographically ordered $I_{1}, l_{2}, \ldots, l_{\binom{n}{k} \text {. Hence we define a linear }}$ map

$$
\Phi: \Lambda^{k}\left(V^{*}\right) \longrightarrow \mathbb{R}^{\binom{n}{k}}
$$

where the ℓ-th component of $\Phi(\alpha)$ is given by

$$
\Phi(\alpha)_{\ell}=\alpha\left(v_{i_{\ell 1}}, v_{i_{2}}, \ldots, v_{i_{\ell k}}\right)
$$

with $I_{\ell}=\left\{1 \leq i_{\ell 1}<i_{\ell 2}<\ldots<i_{\ell k} \leq n\right\}$. Claim: Φ is an isomorphism.

Injectivity of Φ

Assume $\Phi(\alpha)=0$.
Pick any tupel $w_{1}, \ldots, w_{k} \in V$.

$$
w_{i}=\sum_{j=1}^{n} \lambda_{i j} v_{j}
$$

Then

$$
\begin{aligned}
\alpha\left(w_{1}, \ldots, w_{k}\right) & =\sum_{j_{1}, j_{2}, \ldots, j_{k}=1}^{n} \lambda_{1 j_{1}} \lambda_{2 j_{2}} \ldots \lambda_{k_{j}} \alpha\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{k}}\right) \\
& =\sum_{l} c_{l} \Phi(\alpha)_{I}=0
\end{aligned}
$$

where the last sum is over all k-element subsets of $\{1 ; 2 ; \ldots ; n\}$.
Hence $\alpha=0$.

Surjectivity of Φ

Let $I=\left\{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n\right\}$ be an k-element ordered subset of $\{1, \ldots, n\}$. We define $\alpha_{I} \in \Lambda^{k}(V)$

$$
\alpha_{l}\left(v_{j_{1}}, \ldots, v_{j_{k}}\right)= \begin{cases}0 & \text { if }\left\{j_{1} ; \ldots ; j_{k}\right\} \neq\left\{i_{1} ; \ldots ; i_{k}\right\} \\ (-1)^{\sigma} & \text { for } \sigma \in S_{k} \text { with } j_{\ell}=i_{\sigma(\ell)}\end{cases}
$$

extending it linearily in each component.
Then $\Phi\left(\alpha_{l}\right)=e_{\ell}$ with $I_{\ell}=I$.

Hence Φ is surjective. \square

The Wedge-Product

For $\alpha \in \Lambda^{k}(V)$ and $\beta \in \Lambda^{\ell}(V)$ we define $\alpha \wedge \beta \in \Lambda^{k+\ell}(V)$ via

$$
\begin{aligned}
& (\alpha \wedge \beta)\left(w_{1}, \ldots w_{k+\ell}\right) \\
& \quad:=\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}}(-1)^{\sigma} \alpha\left(w_{\sigma(1)}, \ldots w_{\sigma(k)}\right) \beta\left(w_{\sigma(k+1)}, \ldots w_{\sigma(k+\ell)}\right) .
\end{aligned}
$$

Theorem 3: The wedge-product turns

$$
\Lambda^{*}(V):=\oplus_{k=0}^{n} \Lambda^{k}(V) .
$$

into a graded commutative algebra over \mathbb{R}.

An algebra is a vector space with a (linear) ring structure, graded algebra refers to $\alpha \wedge \beta \in \Lambda^{k+\ell}(V)$ for α, β as given above, graded commutative means that

$$
\alpha \wedge \beta=(-1)^{k \ell} \beta \wedge \alpha
$$

The wedge-product is sometimes also called exterior product

Proof of Theorem 3:

We will only deal with the associativity. Check the other properties! For $\alpha \in \Lambda^{k}(V), \beta \in \Lambda^{\ell}(V), \gamma \in \Lambda^{m}(V)$ we define $\mu(\alpha, \beta, \gamma) \in \Lambda^{k+\ell+m}(V)$ via

$$
\begin{aligned}
& \mu(\alpha, \beta, \gamma)\left(w_{1}, \ldots, w_{k+\ell+m}\right) \\
& \begin{aligned}
&=\frac{1}{k!\ell!m!} \sum_{\sigma \in S_{k+\ell+m}}(-1)^{\sigma} \alpha\left(w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right) \beta\left(w_{\sigma(k+1)}, \ldots, w_{\sigma(k+\ell)}\right) \times \\
& \quad \times \gamma\left(w_{\sigma(k+\ell+1)}, \ldots, w_{\sigma(k+\ell+m)}\right)
\end{aligned}
\end{aligned}
$$

Claim: $(\alpha \wedge \beta) \wedge \gamma=\mu(\alpha, \beta, \gamma)=\alpha \wedge(\beta \wedge \gamma)$

Proof of Theorem 3:

$$
\begin{aligned}
& (\alpha \wedge \beta) \wedge \gamma\left(w_{1}, \ldots, w_{k+\ell+m}\right) \\
& =\frac{1}{(k+\ell)!m!} \sum_{\sigma \in S_{k+\ell+m}}(-1)^{\sigma}(\alpha \wedge \beta)\left(w_{\sigma(1)}, \ldots, w_{\sigma(k+\ell)}\right) \times \\
& \times \gamma\left(w_{\sigma(k+\ell+1)}, \ldots, w_{\sigma(k+\ell+m)}\right) \\
& =\frac{1}{(k+\ell)!m!} \sum_{\sigma \in S_{k+\ell+m}}(-1)^{\sigma} \frac{1}{k!\ell!} \sum_{\tau \in S_{k+\ell}}(-1)^{\tau} \alpha\left(w_{\sigma(\tau(1))}, \ldots w_{\sigma(\tau(k))}\right) \times \\
& =\frac{1}{k!\ell!m!} \sum_{\tau \in S_{k+\ell}} \frac{1}{(k+\ell)!} \sum_{\sigma \in S_{k+\ell+m}}(-1)^{\sigma}(-1)^{\tau} \alpha\left(w_{\sigma(\tau(1))}, \ldots w_{\sigma(\tau(k))}\right) \times \\
& \times \beta\left(w_{\sigma(\tau(k+1))}, \ldots w_{\sigma(\tau(k+\ell))}\right) \times \\
& \times \gamma\left(w_{\sigma(k+\ell+1)}, \ldots, w_{\sigma(k+\ell+m)}\right)
\end{aligned}
$$

Proof of Theorem 3:

$$
\begin{aligned}
& \begin{aligned}
&=\frac{1}{k!\ell!m!} \sum_{\tau \in S_{k+\ell}} \frac{1}{(k+\ell)!} \sum_{\substack{\sigma \in S_{k++m} \\
\sigma \circ T}}(-1)^{\stackrel{-\lambda}{\widetilde{\sigma} \sigma \tau}} \alpha\left(w_{\sigma(\tau(1))}, \ldots w_{\sigma(\tau(k))}\right) \times \\
& \times \beta\left(w_{\sigma(\tau(k+1))}, \ldots w_{\sigma(\tau(k+\ell))}\right) \times
\end{aligned} \\
& \lambda=\sigma \circ T \\
& =\frac{1}{k!\ell!m!} \sum_{\tau \in S_{k+\ell}} \frac{1}{(k+\ell)!} \sum_{\substack{\phi \in S_{k+\ell+m}}}(-1)^{\lambda^{\phi}} \alpha\left(w_{\sigma(1)}, \ldots w_{\sigma(k)}\right) \times \\
& \times \beta\left(w_{\sigma(k+1)}, \ldots w_{\sigma(k+\ell)}\right) \times \\
& \times \gamma\left(w_{\sigma(k+\ell+1)}, \ldots, w_{\sigma(k+\ell+m)}\right) \\
& =\mu(\alpha, \beta, \gamma)\left(w_{1}, \ldots, w_{k+\ell+m}\right)
\end{aligned}
$$

The second equality is proved likewise.

A Basis of $\Lambda^{k}\left(V^{*}\right)$

Proposition 4: Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of the vector spave V and denote by $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ its dual basis of V^{*}. Then the elements of the basis $\left\{\alpha_{I} \mid I=\left\{1 \leq i_{1}<i_{2}<\ldots<i_{k}\right\}\right\}$ of $\Lambda^{k}\left(V^{*}\right)$ in the proof of Theorem 2 are given by

$$
\alpha_{i_{1} i_{2} \ldots i_{k}}=\alpha_{i_{1}} \wedge \alpha_{i_{2}} \wedge \ldots \wedge \alpha_{i_{k}}
$$

Proof: It suffices to show that the right hand side evaluated on the k-tupel $\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{k}}\right) \in V^{k}$ is equal to the left hand side. Now

$$
\begin{aligned}
& \alpha_{i_{1}} \wedge \alpha_{i_{2}} \wedge \ldots \wedge \alpha_{i_{k}}\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{k}}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} \alpha_{i_{1}}\left(v_{j_{\sigma(1)}}\right) \alpha_{\underline{i_{2}}}\left(\underline{v_{j_{\sigma(2)}}}\right) \ldots \alpha_{i_{k}}\left(v_{j_{\sigma(k)}}\right)
\end{aligned}
$$

The indices j_{k} have to be pairwise distinct, since $\alpha_{i_{1}} \wedge \alpha_{i_{2}} \wedge \ldots \wedge \alpha_{i_{k}}$ is antisymmetric by definition.

Proof of Proposition 4:

If the sets $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \neq\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ at least for one ℓ we have $i_{\ell} \neq j_{\sigma(\ell)}$, therefore $\alpha_{i_{\ell}}\left(v_{\left.j_{\sigma(\ell)}\right)}\right)=0$ and hence the whole product vanishes. Since this holds for all σ we have established the vanishing of the right hand side if $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \neq\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$.

Finally, if $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \overline{\overline{\text { c/ }}}\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ there is (exactly one) permutation $\sigma \in S_{k}$ such that for all ℓ we have $i_{\ell}=j_{\sigma(\ell)}$ and thus $\alpha_{i_{\ell}}\left(v_{j_{\sigma(\ell)}}\right)=1$. For all other permutations the corresponding summand hence vanishes and the only summand surviving gives rise to

$$
\alpha_{i_{1}} \wedge \alpha_{i_{2}} \wedge \ldots \wedge \alpha_{i_{k}}\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{k}}\right)=(-1)^{\sigma}
$$

Pull-back and Interior product

Let $F: V \rightarrow W$ be a linear map between real vector spaces V and W. Then the pullback of an exterior k-form $\alpha \in \Lambda^{k}\left(W^{*}\right)$ is the exterior k-form $F^{*} \alpha \in \Lambda^{k}\left(V^{*}\right)$ defined by

$$
\left(F^{*} \alpha\right)\left(v_{1}, \ldots, v_{k}\right):=\alpha\left(F\left(v_{1}\right), \ldots, F\left(v_{k}\right)\right)
$$

Let $\alpha \in \Lambda^{k}\left(V^{*}\right)$ be an exterior k-form and $v \in V$ a vector. The interior product of v with α is the $(k-1)$-form $v\lrcorner \alpha \in \Lambda^{k-1}\left(V^{*}\right)$ defined by

$$
(v\lrcorner \alpha)\left(v_{1}, \ldots, v_{k-1}\right):=\alpha\left(v, v_{1}, \ldots, v_{k-1}\right)
$$

Pull-back and Interior Product

Proposition 5: (1) The pull-back $F^{*}: \Lambda^{k}\left(W^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$ is a linear map.
(2) The map $V \times \Lambda^{k}\left(V^{*}\right) \rightarrow \Lambda^{k-1}\left(V^{*}\right)$ given by $\left.(v, \alpha) \mapsto v\right\lrcorner \alpha$ is a bilinear map.
(3) We have the following relations

$$
\begin{aligned}
& \text { for } \begin{aligned}
v, w \in V, \alpha \in \Lambda^{k}\left(V^{*}\right) & : \\
\qquad & \\
\text { for } v(w\lrcorner \alpha) & =-w\lrcorner(v\lrcorner \alpha) \\
v, \alpha \in \Lambda^{k}\left(V^{*}\right), \beta & \in \Lambda^{\ell}\left(V^{*}\right): \\
v\lrcorner(\alpha \wedge \beta) & \left.=(v\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(v\lrcorner \beta\right)
\end{aligned}
\end{aligned}
$$

$$
\text { for } F: V \rightarrow W \text { linear, } v \in V, \alpha \in \Lambda^{k}\left(V^{*}\right):
$$

$$
\left.v\lrcorner\left(F^{*} \alpha\right)=F^{*}(F(v)\lrcorner \alpha\right) .
$$

Proof: Exercise

Scalar product on $\Lambda^{k}\left(V^{*}\right)$

Let V be an oriented, euclidean vector space. The scalar product induces a scalar product on antisymmetric k-forms: For $\alpha, \beta \in \Lambda^{k}\left(V^{*}\right)$ we define

$$
\langle\alpha, \beta\rangle:=\sum_{I=\left\{1 \leq i_{1}<i_{2}<\ldots<i_{k}\right\}} \alpha\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \beta\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)
$$

where $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of V. This definition does not depend on the orthonormal basis. Moreover, the basis induced by that orthonormal basis, $\left\{\alpha_{l}\right\}_{l=\left\{1 \leq i_{1}<i_{2}<\ldots<i_{k}\right\}}$ is an orthonormal basis of $\Lambda^{k}\left(V^{*}\right)$ (Check this!).

The Volume Form

Assume that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an n-dimensional, oriented orthonormal basis. The volume form, $d V \in \Lambda^{n}$, of an oriented, euclidean vector space V is defined via

$$
d V\left(w_{1}, \ldots, w_{n}\right):=\operatorname{det}\left(\begin{array}{ccc}
\left\langle w_{1}, v_{1}\right\rangle & \ldots & \left\langle w_{1}, v_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle w_{n}, v_{1}\right\rangle & \ldots & \left\langle w_{n}, v_{n}\right\rangle
\end{array}\right) .
$$

Lemma 6: (1) The definition of $d V$ is independent of the choice of an oriented orthonormal basis.
(2) It has length one: $\langle d V, d V\rangle=1$ and $\Lambda^{n}(V)=\mathbb{R} d V$.
(3) For the dual basis $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of a oriented orthonormal basis as above we have

$$
d V=\alpha_{1} \wedge \ldots \wedge \alpha_{n}
$$

Proof: Exercise

The Hodge-*-Operator

Recall that the linear map

$$
\alpha \in \Lambda^{k}\left(V^{*}\right) \mapsto\langle\alpha, .\rangle \in\left(\Lambda^{k}\left(V^{*}\right)\right)^{*}
$$

is an isomorhism since $\langle.,$.$\rangle is non-degenerate.$
On the other hand for a given $\alpha \in \Lambda^{k}\left(V^{*}\right)$

$$
\beta \in \Lambda^{n-k}\left(V^{*}\right) \mapsto \frac{\alpha \wedge \beta}{d V} \in \mathbb{R}
$$

defines an element in $\left(\Lambda^{n-k}\left(V^{*}\right)\right)^{*}$. Its image under the inverse of the above isomorphism is a $(n-k)$-form, called the Hodge dual of α and denoted by $* \alpha \in \Lambda^{n-k}\left(V^{*}\right)$.

The Hodge-*-Operator

Lemma 7: (1) The map

$$
: \Lambda^{k}\left(V^{}\right) \longrightarrow \Lambda^{n-k}\left(V^{*}\right)
$$

is an isometry which is referred to as Hodge-*-operator.
(2) On k-forms $*^{2}=* \circ *=(-1)^{k(n-k)}$.
(3) For $\alpha, \beta \in \Lambda^{k}\left(V^{*}\right)$ we have

$$
\alpha \wedge * \beta=\langle\alpha, \beta\rangle d V
$$

Proof of Lemma 7:
Af (1) $\alpha, \beta \in \Lambda^{k}\left(V^{*}\right)$
to show $\langle\alpha, \beta\rangle=\langle * \alpha, * \beta\rangle$
by definition: $\langle\not \alpha \alpha, \gamma\rangle=\frac{\alpha \wedge \gamma}{d V} \quad \forall \gamma+\Lambda^{n-k}\left(V^{*}\right)$

$$
\Rightarrow \quad\langle\neq \alpha, \gamma\rangle d v=\alpha \star \gamma
$$

Hence $\langle * \alpha, * \beta\rangle d V=\alpha \wedge * \beta \quad \ldots$?

Proof of Lemma 7:

Proof of Lemma 7:

