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Lagrangian Mechanics

L THRAR Ly fkn, paeh rloiroh
Lly)= f Ll ytey, @) &% ¥ (a): 1, ¢ )21
We need to compute the first variation.

Lemma 83: There is an smooth section X , € I'(y*T*M) such
that

d,L(§) = /ab X1~ (€)(t)dt.

for all smooth vectorfields £ along ~.
A global description is given by

XL/'y = g(v’yi'.% )(: g(v“—/;ya ))

dt



The Euler-Lagrange Equations (4 Vrecopy BGped
. . “¢e)
We derive a global formulatlon of general §r ) yal, prCe) o) .
Euler-Lagrange-equations. We have:

Hiro ¥ =5
d b ”[T"’zrq) 20 23®) X
L) =] / LO#(8), 3 (1), £)de
—/ Lo (e)3(e). )t
= d(v(t (e Le( \ % t))dt.
where L; : TM x R — Ris L¢(x,v) := L(x, v, t). {gg/,,a, wgg )



The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:
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d
= [ dy)seyle(—=|  A-(¢))dt.
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where L; : TM x R — R is L¢(x,v) := L(x, v, t). What is
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The Euler-Lagrange Equations

We derive a global formulation of general
Euler-Lagrange-equations. We have:

7 / " Ln(0).30(0),
= [7 9] o). 30, O

d
= [ dysenle(o=|  A-(t))dt.
/a CIORIO) t(dT‘Tzov (1))

where L; : TM x R — R is L¢(x,v) := L(x, v, t). What is

dq
drlr=0

d,L(€) =

Y (t) € Ty sen TM 7

Fix a connection V on TM 5 M. Recall for the smooth map
T TM—> M

d d d

dooyscom( | _ir(0) = g-| (G0 = o
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With the isomorphism (d(s(e)5(0)™) ™"+ TyyM = Ty 509 TM

d

27137 (0) = (di509m) THED) = V3 £(2).

7=0 dt




The Euler-Lagrange Equations
With the isomorphism (d(s(e)5(0)™) ™"+ TyyM = Ty 509 TM

d i 3
ol _ () = (i 597) Hg(r) = V%é(t).
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dt



The Euler-Lagrange Equations
With the isomorphism (d(s(e)5(0)™) ™"+ TyyM = Ty 509 TM

d i 3
ol _ () = (i 597) Hg(r) = V%é(t).
We get
d :
dorsnlelg-| _i(0)

= diy(0) () Le(diye) (™) THE())) + d@(t)ﬁ(t))Lt(V:%E (1))
We identified T, ,\(TxM) = T, M.



The Euler-Lagrange Equations
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The Euler-Lagrange Equations
With the isomorphism (d('y(t),"y(t)ﬂ') : 'y(t)M — T( (£),3()) ™

d

| 37(6) = (di a9™) () = VL E(D).

dt

We get

d .
dorsnlelg-| _i(0)

= o Leldama0m ™ (60N + i) Le(V L E(E)):
We identified T, ,\(TxM) = T, M.

Partial integration yields

/ diy(1)4(2)) (V f()dt /V (d0(0)4(0) Le)(E(1))dt,

where d ¢ ke = d(v(fm(f))“’n osn(Trom & 170N



The Euler-Lagrange Equations
With the isomorphism (d('y(t),"y(t)ﬂ') : 'y(t)M — T( (£),3()) ™

a4
d7lr=0

Y2 () = (dia(e),50m) " (E(L)) = VL E(t).

dt

We get

d .
dorsnlelg-| _i(0)

= o Leldama0m ™ (60N + i) Le(V L E(E)):
We identified T, ,\(TxM) = T, M.

Partial integration yields

/ diy(1)4(2)) (V f()dt /V (d0(0)4(0) Le)(E(1))dt,

where df, ) 5oy Le = d(w(r),w(t))Lt’T( oney(Tooy = M the
covariant derivative applied to it is the one mduced by V7 and we

make use of £(a) = £(b) = 0.



The Euler-Lagrange Equations
We end up with

b ¢ - )
d,L(€) = / (devoatenLeoldn o 4m) I—V:i(d(v(tm(t))“))(5(”)‘”
a — t

Fppunis v
which has to vanish for all £.



The Euler-Lagrange Equations
We end up with

b
dyL(§) = / (d(v(t)w))Lro(d(vumt)ﬂ)_l—vz%(d(vw(t),w(t))Lt))(5“))"’-‘
which has to vanish for all £.

Proposition 84: An extremal path v : [a, b] — M in the space of
all such maps with the same endpoints y(a) = xo and v(b) = x;
satisfies the Euler-Lagrange equations

V - Vv
iy ) Le © (di(e) 4(0m) = Ve (doaele) =0.



The Euler-Lagrange Equations
We end up with

d
dt

b
d,L(€) = / (dovoratnLeolda 0m) =V (0 sepLe)) (E(0)dt

which has to vanish for all £.

Proposition 84: An extremal path v : [a, b] — M in the space of
all such maps with the same endpoints y(a) = xo and v(b) = x;
satisfies the Euler-Lagrange equations

iy ) Le © (diy(e) 4(0)m) " = Ve (doaele) =0.

Remark: Notice: Both terms depend on the auxilary connection
V chosen, their difference, however, does not. (Exercise: Show this
directly without referring to the fact that these equations describe
the critical points of a functional which is defined without
reference to V)



Geodesics

» (M, g)...Riemannian manifold

» V...Levi-Civita connection.

» ~: | — M..smooth curve: V7 pull-back of V to v*TM
Definition 84: ~ is a geodesic if it satisfies

V74 =0,

i.e. the velocity field is parallel along ~.



Geodesics

» (M, g)...Riemannian manifold
» V...Levi-Civita connection.
» ~:/— M..smooth curve: V7 pull-back of V to v*TM

Definition 84: ~ is a geodesic if it satisfies
V74 =0,
i.e. the velocity field is parallel along ~.

Remark: (1) Geodesics are critical points of the Lagrangian
functional on smooth paths connecting two fixed points or on
loops with the Lagrange function L : TM — R given by

L(x, %) = %HkHé(X). The interval has to be a fixed compact
interval.

(2) They are also locally minimizing the length of curves and the
curve connecting two points of minimal length is a geodesic (and
in particular smooth).
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Let v : [a, b] = M be a geodesic. How to decide, whether it is a
minimum of the energy and hence length minimizing?
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Jacobi Fields

Let v : [a, b] = M be a geodesic. How to decide, whether it is a
minimum of the energy and hence length minimizing?

Need to compute the Hessian or the second variation of the
energy functional. Let &, be smooth vector fields,

¢(a) =n(a) =0,&(b) = n(b) = 0. Define
[:(—¢,€) x (—€,€) x [a,b] > M e.g. via

Mo,71.t) = exp,y(t)(af(t) + (t)).

r(0,0,t) =~(t),M(o,7,a) =~(a),l(o,7,b) = v(b) and

0 0

87‘0:0,7:0 =& E‘J:O,T:OF =



Jacobi Fields

We compute

2 o (b 0 or or
808T£(F(J’T”)) =ar /, %g(gva)dt
r
(97’/ g( V r r

:/ g(V', V', 1)+ (9, .97, )) ot




Jacobi Fields

We compute
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3087['(”0’7—”)) =ar /, %g(gva)dt
r
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= [ (s(v, ¥, 1.1 +g<v;r,vgr>)dr
a T do do or

We use that V is torsion free and get for the first term



Jacobi Fields

We compute

2 o (b 0 or or
8087['(”0’7—”)) =ar /, %g(gaa)dt
r
87’/ gV r r

= [ (s(v, ¥, 1.1 +g<v;r,vgr>)dr
a T do do or

We use that V is torsion free and get for the first term

b . b ar .
| e(Va VT f)de = [ (9% Vi 5 et
a or oo a or 81:80'

Then with
R(X,Y)Z =VxVyZ —VyVxZ —Vxyv|Z



Jacobi Fields

We compute

&2 a (b o ar ar
r S B G W
goar Mo 7)) = 5 2aag(at’at) !
P2/
87’/ 8( vr r r v’i%
Vi v
= [ (s(v, ¥, 1.1 +g<v;r,vr@r>)dr
a or do oo or I/

Far
¥

FLIN

We use that V is torsion free and get for the first term
b rof F ¢ R ar .
| e(V7 VT £ F)de = / e, 5 X e = A
a oT oo a or Bt 80'
Then with

R(X,Y)Z =VxVyZ—-VyVxZ— Vix,v1€

to see that thism /\/q
r .
A / (V5 Vs o~ 8 / g(R F)dt.

,_____—————-O




Jacobi Fields

Now partially integrate, use that &, n vanish at the end points and
V74 = 0 te see that the first term vanishes. far 0= 7= 0

ro.
Vé/—'[ :Vib/x';o

0=725 ¢



Jacobi Fields
Now partially integrate, use that &, n vanish at the end points and
V74 = 0 te see that the first term vanishes.

Using torsion-freeness again and take ¢ = 7 = 0 we end up with

af;ﬁ(r(" T"))‘ _ :/f (g( R(1,%)7, §)+g(v £, v ));/t

/ er Va77+R(77 Y)Y, €)dt

(A i(fe(s’,zs' 3) - Ko($e pa )



Jacobi Fields

Now partially integrate, use that &, n vanish at the end points and
V74 = 0 te see that the first term vanishes.

Using torsion-freeness again and take ¢ = 7 = 0 we end up with
82
do0T

£ |, = [ (6-Rm.A19 + 8V e T n))ae

o=7=0

b
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a t t

Definition 85: Let v:/ — M be a geodesic. A vector field g?
along ~ is called Jacobi field if it satisfies

Vi Va1 + R(n,4)7 =0.

Recall exp, : U C ToM — M, exp,(X) = vx(1) where
vx : [0,1] — M is the unique geodesic with yx(0) = p and
4x(0) = X.



Jacobi Fields

Now partially integrate, use that &, n vanish at the end points and

V74 = 0 te see that the first term vanishes.

Using torsion-freeness again and take ¢ = 7 = 0 we end up with
82

do0T

£ |, = [ (6-Rm.A19 + 8V e T n))ae

o=7=0

b
_— / g(V'y Vi 0+ R(n, )7, €)dt.
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Definition 85: Let v:/ — M be a geodesic. A vector field &
along ~ is called Jacobi field if it satisfies

Vi Va1 + R(n,4)7 =0.

Recall exp, : U C ToM — M, exp,(X) = vx(1) where

vx : [0,1] — M is the unique geodesic with yx(0) = p and
x(0) = X.

If (M, g) is a complete metric space, then U = T,M.



Conjugated Points
Proposition 86: (i) Let v : / — M be a geodesic and £ a Jacobi

field along ~.
Then

§(t) = o(t) + (a+ bt)i(t)

for a Jacobi field &y along v with g(&o(t),~(t)) = 0.
(ii) Let exp, : U C T,M — M be the exponepintial map at
p € M, U open starshaped lts differential

dx exp, - Tx(TPM) = TPM — Texpp(X)M

can be described as follows. For Y € Thconsider the Jacobi field 7
along the geodesic vyx : [0,1] — M, with 7x(0) = p,¥(0) = X with
initial conditions

n(0)=0, Vin(0)=Y.

Then Ao &)= ot
dyexpy(Y) = n(1). T o4



Conjugated Points

Definition 87: X € T,M (or g = exp,(X) € imexp,) is calleg
conjugated to p if dx exp, is not injective. (45& 6

fe. M 6 a j‘csz\’ ﬂtdffdmj ¥x /—v‘/[( gé):o

f(l}: (@]
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