Differential Geometry II Geodesics, Jacobi Fields and Conjugated Points

Klaus Mohnke

June 30, 2020

Lagrangian Mechanics

We need to compute the first variation.

Lemma 83: There is an smooth section $X_{L,\gamma} \in \Gamma(\gamma^* T^* M)$ such that

$$d_{\gamma}\mathcal{L}(\xi) = \int_{a}^{b} \underline{X_{L,\gamma}(\xi)}(t)dt.$$

for all smooth vectorfields ξ along γ .

A global description is given by

$$X_{L_{\hat{\gamma}'}} = g(\nabla_{\frac{d}{dt}}^{\gamma}\dot{\gamma},.) (= g(\nabla_{\dot{\gamma}}\dot{\gamma},.)).$$

We derive a global formulation of general Euler-Lagrange-equations. We have:

We derive a global formulation of general Euler-Lagrange-equations. We have:
$$d_{\gamma}\mathcal{L}(\xi) = \frac{d}{d\tau}\Big|_{\tau=0} \int_{a}^{b} L(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t) dt$$

$$= \int_{a}^{b} \frac{d}{d\tau}\Big|_{\tau=0} L(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t) dt$$

$$= \int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}(\frac{d}{d\tau}\Big|_{\tau=0} \dot{\gamma}_{\tau}(t)) dt.$$
 where $L_{t}: TM \times \mathbb{R} \to \mathbb{R}$ is $L_{t}(x, v) := L(x, v, t)$.
$$(8\tau)_{\tau=(-\xi, \xi)} \text{ for } J_{\tau}(x) \text$$

We derive a global formulation of general Euler-Lagrange-equations. We have:

$$d_{\gamma}\mathcal{L}(\xi) = \frac{d}{d\tau}\Big|_{\tau=0} \int_{a}^{b} L(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t) dt$$

$$= \int_{a}^{b} \frac{d}{d\tau}\Big|_{\tau=0} L(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t) dt$$

$$= \int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}(\frac{d}{d\tau}\Big|_{\tau=0} \dot{\gamma}_{\tau}(t)) dt.$$

where
$$L_t: TM \times \mathbb{R} \to \mathbb{R}$$
 is $L_t(x,v) := L(x,v,t)$. What is
$$\frac{d}{d\tau}\Big|_{\tau=0} \dot{\gamma}_{\tau}(t) \in T_{(\gamma(t),\dot{\gamma}(t))}TM \quad ? \quad \text{if } (x,v) \in T_t \mapsto x \in T_t \text{ if } (x,v) \in T_t \mapsto x \in T_t \text{ if } (x,v) \text{ if } (x,v) \in T_t \text{ if } (x,v) \text{ if } (x,v) \in T_t \text{ if } (x,v) \text{ if } (x,v) \in T_t \text{ if } (x,v) \text{ if } (x$$

We derive a global formulation of general Euler-Lagrange-equations. We have:

$$d_{\gamma}\mathcal{L}(\xi) = \frac{d}{d\tau}\Big|_{\tau=0} \int_{a}^{b} L(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t) dt$$

$$= \int_{a}^{b} \frac{d}{d\tau}\Big|_{\tau=0} L(\gamma_{\tau}(t), \dot{\gamma}_{\tau}(t), t) dt$$

$$= \int_{a}^{b} d_{(\gamma(t), \dot{\gamma}(t))} L_{t}(\frac{d}{d\tau}\Big|_{\tau=0} \dot{\gamma}_{\tau}(t)) dt.$$

where $L_t:TM imes\mathbb{R} o\mathbb{R}$ is $L_t(x,v):=L(x,v,t).$ What is

$$\frac{d}{d\tau}\Big|_{\tau=0}\dot{\gamma}_{\tau}(t)\in T_{(\gamma(t),\dot{\gamma}(t))}TM$$
 ?

Fix a connection ∇ on $TM \stackrel{\pi}{\to} M$. Recall for the smooth map $\pi: TM \to M$

$$d_{(\gamma(t),\dot{\gamma}(t)}\pi(\frac{d}{d\tau}\Big|_{\tau=0}\dot{\gamma}_{\tau}(t))=\frac{d}{d\tau}\Big|_{\tau=0}(\pi(\dot{\gamma}_{\tau}(t)))=\frac{d}{d\tau}\Big|_{\tau=0}\gamma_{\tau}(t)=\xi(t).$$

The Euler-Lagrange Equations To a come of a on Th. The Thomas To The Thomas The The Thomas The The Thomas The The Thomas The Thomas The Thomas The Thomas The The The Thomas Th

With the isomorphism $(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}:T_{\gamma(t)}M o T^h_{(\gamma(t),\dot{\gamma}(t))}TM$

$$\frac{d}{d\tau}\Big|_{\tau=0}\dot{\gamma}_{\tau}(t)-(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t))=\nabla^{\gamma}_{\frac{d}{dt}}\xi(t).$$

With the isomorphism $(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}:T_{\gamma(t)}M\to T^h_{(\gamma(t),\dot{\gamma}(t))}TM$

$$\left.rac{d}{d au}
ight|_{ au=0}\dot{\gamma}_{ au}(t)-(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t))=
abla_{rac{d}{dt}}^{\gamma}\xi(t).$$

We get

With the isomorphism $(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}:T_{\gamma(t)}M\to T^h_{(\gamma(t),\dot{\gamma}(t))}TM$

$$\left.rac{d}{d au}
ight|_{ au=0}\dot{\gamma}_{ au}(t)-(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t))=
abla_{rac{d}{dt}}^{\gamma}\xi(t).$$

We get

$$d_{(\gamma(t),\dot{\gamma}(t))}L_t(\frac{d}{d\tau}\Big|_{\tau=0}\dot{\gamma}_{\tau}(t))$$

$$=d_{(\gamma(t),\dot{\gamma}(t))}L_t(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t)))+d_{(\gamma(t),\dot{\gamma}(t))}L_t(\nabla_{\frac{d}{dt}}^{\gamma}\xi(t)).$$

We identified $T_{(x,v)}(T_xM) \cong T_xM$.

With the isomorphism $(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}:T_{\gamma(t)}M \to T^h_{(\gamma(t),\dot{\gamma}(t))}TM$

$$\left.rac{d}{d au}
ight|_{ au=0}\dot{\gamma}_{ au}(t)-(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t))=
abla_{rac{d}{dt}}^{\gamma}\xi(t).$$

We get

$$\begin{aligned} d_{(\gamma(t),\dot{\gamma}(t))} L_t \left(\frac{d}{d\tau} \Big|_{\tau=0} \dot{\gamma}_{\tau}(t) \right) \\ &= d_{(\gamma(t),\dot{\gamma}(t))} L_t \left(d_{(\gamma(t),\dot{\gamma}(t))} \pi \right)^{-1} (\xi(t)) + d_{(\gamma(t),\dot{\gamma}(t))} L_t (\nabla_{\frac{d}{dt}}^{\gamma} \xi(t)). \end{aligned}$$

We identified $T_{(x,v)}(T_xM) \cong T_xM$.

Partial integration yields

$$\int_a^b d_{(\gamma(t),\dot{\gamma}(t))} L_t(\nabla_{\frac{d}{dt}}^{\gamma} \xi(t)) dt = -\int_a^b \nabla_{\frac{d}{dt}}^{\gamma} (d_{(\gamma(t),\dot{\gamma}(t))}^{\nu} L_t)(\xi(t)) dt,$$

With the isomorphism $(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}:T_{\gamma(t)}M \to T^h_{(\gamma(t),\dot{\gamma}(t))}TM$

$$\left.rac{d}{d au}
ight|_{ au=0}\dot{\gamma}_{ au}(t)-(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t))=
abla_{rac{d}{dt}}^{\gamma}\xi(t).$$

We get

$$d_{(\gamma(t),\dot{\gamma}(t))}L_t(\frac{d}{d\tau}\Big|_{\tau=0}\dot{\gamma}_{\tau}(t))$$

$$=d_{(\gamma(t),\dot{\gamma}(t))}L_t(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t)))+d_{(\gamma(t),\dot{\gamma}(t))}L_t(\nabla_{\frac{d}{dt}}^{\gamma}\xi(t)).$$

We identified $T_{(x,v)}(T_xM) \cong T_xM$.

Partial integration yields

$$\int_a^b d_{(\gamma(t),\dot{\gamma}(t))} L_t(\nabla_{\frac{d}{dt}}^{\gamma} \xi(t)) dt = -\int_a^b \nabla_{\frac{d}{dt}}^{\gamma} (d_{(\gamma(t),\dot{\gamma}(t))}^{\nu} L_t)(\xi(t)) dt,$$

where
$$d^{\mathsf{v}}_{(\gamma(t),\dot{\gamma}(t))}L_t = d_{(\gamma(t),\dot{\gamma}(t))}L_t\Big|_{T_{(\gamma(t),\dot{\gamma}(t))}(T_{\gamma(t)}M)} \in T^*_{\gamma(t)}M$$
,

With the isomorphism $(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}:T_{\gamma(t)}M \to T^h_{(\gamma(t),\dot{\gamma}(t))}TM$

$$\left.rac{d}{d au}
ight|_{ au=0}\dot{\gamma}_{ au}(t)-(d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1}(\xi(t))=
abla_{rac{d}{dt}}^{\gamma}\xi(t).$$

We get

$$d_{(\gamma(t),\dot{\gamma}(t))}L_{t}\left(\frac{d}{d\tau}\Big|_{\tau=0}\dot{\gamma}_{\tau}(t)\right) = d_{(\gamma(t),\dot{\gamma}(t))}L_{t}\left(d_{(\gamma(t),\dot{\gamma}(t))}\pi\right)^{-1}(\xi(t)) + d_{(\gamma(t),\dot{\gamma}(t))}L_{t}(\nabla_{\frac{d}{dt}}^{\gamma}\xi(t)).$$

We identified $T_{(x,v)}(T_xM) \cong T_xM$.

Partial integration yields

$$\int_a^b d_{(\gamma(t),\dot{\gamma}(t))} L_t(\nabla_{\frac{d}{dt}}^{\gamma} \xi(t)) dt = -\int_a^b \nabla_{\frac{d}{dt}}^{\gamma} (d_{(\gamma(t),\dot{\gamma}(t))}^{\nu} L_t)(\xi(t)) dt,$$

where $d_{(\gamma(t),\dot{\gamma}(t))}^{v}L_{t}=d_{(\gamma(t),\dot{\gamma}(t))}L_{t}\Big|_{T_{(\gamma(t),\dot{\gamma}(t))}(T_{\gamma(t)}M)}\in T_{\gamma(t)}^{*}M$, the covariant derivative applied to it is the one induced by ∇^{γ} and we make use of $\xi(a)=\xi(b)=0$.

We end up with

$$d_{\gamma}\mathcal{L}(\xi) = \int_{a}^{b} \Big(d_{(\gamma(t),\dot{\gamma}(t))} L_{t} \circ (\underbrace{d_{(\gamma(t),\dot{\gamma}(t)}^{\nabla}\pi)^{-1}}_{\text{diptods on } \nabla} - \nabla_{\frac{d}{dt}}^{\gamma} (d_{(\gamma(t),\dot{\gamma}(t))}^{\nu} L_{t}) \Big) (\xi(t)) dt$$
which has to variab for all ξ

which has to vanish for all ξ .

We end up with

$$d_{\gamma}\mathcal{L}(\xi) = \int_{a}^{b} \left(d_{(\gamma(t),\dot{\gamma}(t))} \mathcal{L}_{t} \circ \left(d_{(\gamma(t),\dot{\gamma}(t))} \pi \right)^{-1} - \nabla_{\frac{d}{dt}}^{\gamma} \left(d_{(\gamma(t),\dot{\gamma}(t))}^{\nu} \mathcal{L}_{t} \right) \right) (\xi(t)) dt$$

which has to vanish for all ξ .

Proposition 84: An extremal path $\gamma:[a,b]\to M$ in the space of all such maps with the same endpoints $\gamma(a)=x_0$ and $\gamma(b)=x_1$ satisfies the Euler-Lagrange equations

$$d_{(\gamma(t),\dot{\gamma}(t))}L_t\circ (d_{(\gamma(t),\dot{\gamma}(t))}^{\triangledown}\pi)^{-1}-\nabla_{\frac{d}{dt}}^{\gamma}(d_{(\gamma(t),\dot{\gamma}(t))}^{\nu}L_t)=0.$$

We end up with

$$d_{\gamma}\mathcal{L}(\xi) = \int_{a}^{b} \left(d_{(\gamma(t),\dot{\gamma}(t))} L_{t} \circ \left(d_{(\gamma(t),\dot{\gamma}(t))} \pi \right)^{-1} - \nabla_{\frac{d}{dt}}^{\gamma} \left(d_{(\gamma(t),\dot{\gamma}(t))}^{\nu} L_{t} \right) \right) (\xi(t)) dt$$

which has to vanish for all ξ .

Proposition 84: An extremal path $\gamma:[a,b]\to M$ in the space of all such maps with the same endpoints $\gamma(a)=x_0$ and $\gamma(b)=x_1$ satisfies the Euler-Lagrange equations

$$d_{(\gamma(t),\dot{\gamma}(t))}L_t \circ (d_{(\gamma(t),\dot{\gamma}(t)}\pi)^{-1} - \nabla_{\frac{d}{dt}}^{\gamma}(d_{(\gamma(t),\dot{\gamma}(t))}^{\nu}L_t) = 0.$$

Remark: Notice: Both terms depend on the auxiliary connection ∇ chosen, their difference, however, does not. (Exercise: Show this directly without referring to the fact that these equations describe the critical points of a functional which is defined without reference to ∇)

Geodesics

- \blacktriangleright (M,g)...Riemannian manifold
- ▶ ∇...Levi-Civita connection.
- ▶ $\gamma: I \to M$...smooth curve: ∇^{γ} pull-back of ∇ to γ^*TM

Definition 84: γ is a **geodesic** if it satisfies

$$\nabla^{\gamma}\dot{\gamma}\equiv 0,$$

i.e. the velocity field is parallel along $\gamma. \label{eq:gamma_parallel}$

Geodesics

- \blacktriangleright (M,g)...Riemannian manifold
- ▶ ∇...Levi-Civita connection.
- ▶ $\gamma: I \to M$...smooth curve: ∇^{γ} pull-back of ∇ to γ^*TM

Definition 84: γ is a **geodesic** if it satisfies

$$\nabla^{\gamma}\dot{\gamma}\equiv 0,$$

i.e. the velocity field is parallel along γ .

Remark: (1) Geodesics are critical points of the Lagrangian functional on smooth paths connecting two fixed points or on loops with the Lagrange function $L:TM\to\mathbb{R}$ given by $L(x,\dot{x})=\frac{1}{2}\|\dot{x}\|_{g(x)}^2$. The interval has to be a fixed compact interval.

(2) They are also **locally** minimizing the length of curves and the curve connecting two points of minimal length is a geodesic (and in particular smooth).

Let $\gamma:[a,b]\to M$ be a geodesic. How to decide, whether it is a minimum of the energy and hence length minimizing?

Let $\gamma:[a,b]\to M$ be a geodesic. How to decide, whether it is a minimum of the energy and hence length minimizing?

Need to compute the Hessian or the **second variation** of the energy functional. Let ξ, η be smooth vector fields, alway $\xi(a) = \eta(a) = 0, \xi(b) = \eta(b) = 0$.

Let $\gamma:[a,b]\to M$ be a geodesic. How to decide, whether it is a minimum of the energy and hence length minimizing?

Need to compute the Hessian or the **second variation** of the energy functional. Let ξ,η be smooth vector fields,

$$\xi(a) = \eta(a) = 0, \xi(b) = \eta(b) = 0$$
. Define $\Gamma: (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times [a, b] \to M$ e.g. via

$$\Gamma(\sigma, \tau, t) := \exp_{\gamma(t)}(\sigma\xi(t) + \tau\eta(t)).$$

Let $\gamma:[a,b]\to M$ be a geodesic. How to decide, whether it is a minimum of the energy and hence length minimizing?

Need to compute the Hessian or the **second variation** of the energy functional. Let ξ, η be smooth vector fields,

$$\xi(a) = \eta(a) = 0, \xi(b) = \eta(b) = 0$$
. Define $\Gamma: (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times [a, b] \to M$ e.g. via

$$-\epsilon,\epsilon) imes (-\epsilon,\epsilon) imes [a,b] o M$$
 e.g. via

$$\Gamma(\sigma, \tau.t) := \exp_{\gamma(t)}(\sigma\xi(t) + \tau\eta(t)).$$

$$\Gamma(0,0,t) = \gamma(t), \Gamma(\sigma,\tau,a) = \gamma(a), \Gamma(\sigma,\tau,b) = \gamma(b)$$

Let $\gamma: [a,b] \to M$ be a geodesic. How to decide, whether it is a minimum of the energy and hence length minimizing?

Need to compute the Hessian or the **second variation** of the energy functional. Let ξ, η be smooth vector fields,

$$\xi(a) = \eta(a) = 0, \xi(b) = \eta(b) = 0.$$
 Define $\Gamma: (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times [a, b] \to M \in \mathfrak{g}$ via

$$\Gamma: (-\epsilon,\epsilon) imes (-\epsilon,\epsilon) imes [a,b] o M$$
 e.g. via

$$\Gamma(\sigma, \tau.t) := \exp_{\gamma(t)}(\sigma\xi(t) + \tau\eta(t)).$$

$$\Gamma(0,0,t)=\gamma(t), \Gamma(\sigma, au,a)=\gamma(a), \Gamma(\sigma, au,b)=\gamma(b)$$
 and

$$\frac{\partial}{\partial \sigma}\Big|_{\sigma=0,\tau=0}\Gamma=\xi, \quad \frac{\partial}{\partial \tau}\Big|_{\sigma=0,\tau=0}\Gamma=\eta.$$

We compute

$$\begin{split} \frac{\partial^2}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma, \tau, .)) &= \frac{\partial}{\partial \tau} \int_a^b \frac{\partial}{2\partial \sigma} g(\frac{\partial \Gamma}{\partial t}, \frac{\partial \Gamma}{\partial t}) dt \\ &= \frac{\partial}{\partial \tau} \int_a^b g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) dt \\ &= \int_a^b \left(g(\nabla^{\Gamma}_{\frac{\partial}{\partial \tau}} \nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) + g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \nabla^{\Gamma}_{\frac{\partial}{\partial \tau}} \dot{\Gamma}) \right) dt \end{split}$$

We compute

$$\begin{split} \frac{\partial^{2}}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma, \tau, .)) &= \frac{\partial}{\partial \tau} \int_{a}^{b} \frac{\partial}{2\partial \sigma} g(\frac{\partial \Gamma}{\partial t}, \frac{\partial \Gamma}{\partial t}) dt \\ &= \frac{\partial}{\partial \tau} \int_{a}^{b} g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) dt \\ &= \int_{a}^{b} \left(g(\nabla^{\Gamma}_{\frac{\partial}{\partial \tau}} \nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) + g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \nabla^{\Gamma}_{\frac{\partial}{\partial \tau}} \dot{\Gamma}) \right) dt \end{split}$$

We use that ∇ is torsion free and get for the first term

We compute

$$\begin{split} \frac{\partial^2}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma, \tau, .)) &= \frac{\partial}{\partial \tau} \int_a^b \frac{\partial}{2\partial \sigma} g(\frac{\partial \Gamma}{\partial t}, \frac{\partial \Gamma}{\partial t}) dt \\ &= \frac{\partial}{\partial \tau} \int_a^b g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) dt \\ &= \int_a^b \left(g(\nabla^{\Gamma}_{\frac{\partial}{\partial \tau}} \nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) + g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \nabla^{\Gamma}_{\frac{\partial}{\partial \tau}} \dot{\Gamma}) \right) dt \end{split}$$

We use that abla is torsion free and get for the first term

$$\int_{a}^{b} g(\nabla_{\frac{\partial}{\partial \tau}}^{\Gamma} \nabla_{\frac{\partial}{\partial \sigma}}^{\Gamma} \dot{\Gamma}, \dot{\Gamma}) dt = \int_{a}^{b} g(\nabla_{\frac{\partial}{\partial \tau}}^{\Gamma} \nabla_{\frac{\partial}{\partial t}}^{\Gamma} \frac{\partial \Gamma}{\partial \sigma}, \dot{\Gamma}) dt.$$

Then with

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

We compute

$$\begin{split} \frac{\partial^{2}}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma, \tau, .)) &= \frac{\partial}{\partial \tau} \int_{a}^{b} \frac{\partial}{2\partial \sigma} g(\frac{\partial \Gamma}{\partial t}, \frac{\partial \Gamma}{\partial t}) dt \\ &= \frac{\partial}{\partial \tau} \int_{a}^{b} g(\nabla^{\Gamma}_{\frac{\partial}{\partial \sigma}} \dot{\Gamma}, \dot{\Gamma}) dt \qquad \qquad \bigvee_{\substack{a \in \mathcal{A} \\ j \in \mathcal{A} \\ j \in \mathcal{A}}} \bigvee_{\substack{a \in \mathcal{A} \\ j \in \mathcal{A}}} \bigvee_{\substack$$

We use that ∇ is torsion free and get for the first term

$$\int_{a}^{b} g(\nabla_{\frac{\partial}{\partial \tau}}^{\Gamma} \nabla_{\frac{\partial}{\partial \tau}}^{\Gamma} \dot{\Gamma}, \dot{\Gamma}) dt = \int_{a}^{b} g(\nabla_{\frac{\partial}{\partial \tau}}^{\Gamma} \nabla_{\frac{\partial}{\partial \tau}}^{\Gamma} \frac{\partial \Gamma}{\partial \sigma}, \dot{\Gamma}) dt. = A$$

Then with

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

to see that this is
$$\oint_{\mathcal{D}} = \int_{a}^{b} g(\nabla_{\frac{\partial}{\partial t}}^{\Gamma} \nabla_{\frac{\partial}{\partial \sigma}}^{\Gamma} \frac{\partial \Gamma}{\partial \sigma}, \dot{\Gamma}) dt + \int_{a}^{b} g(R(\frac{\partial \Gamma}{\partial \tau}, \dot{\Gamma}) \frac{\partial \Gamma}{\partial \sigma}, \dot{\Gamma}) dt.$$

Now partially integrate, use that ξ,η vanish at the end points and $\nabla^{\gamma}\dot{\gamma}=0$ te see that the first term vanishes. ξ

Now partially integrate, use that ξ, η vanish at the end points and $\nabla^{\gamma}\dot{\gamma}=0$ te see that the first term vanishes.

Using torsion-freeness again and take $\sigma= au=0$ we end up with

$$\begin{split} \frac{\partial^{2}}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma,\tau,.)) \Big|_{\sigma=\tau=0} &= \int_{a}^{b} \left(g(-R(\eta,\dot{\gamma})\dot{\gamma},\xi) + g(\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\xi,\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\eta) \right) dt \\ &= -\int_{a}^{b} g(\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\eta + R(\eta,\dot{\gamma})\dot{\gamma},\xi) dt. \end{split}$$

$$\mathcal{C}_{ann}\mathcal{A} \qquad g\left(\mathcal{R}\left(\vec{\mathcal{S}},\dot{\delta} \right) \dot{\delta},\dot{\vec{\mathcal{S}}} \right) \left(\xi \right) = \mathcal{K}_{1}\left(\vec{\mathcal{S}}(\xi),\dot{\delta}(\xi) \right) \end{split}$$

Now partially integrate, use that ξ,η vanish at the end points and $\nabla^{\gamma}\dot{\gamma}=0$ te see that the first term vanishes.

Using torsion-freeness again and take $\sigma= au=0$ we end up with

$$\begin{split} \frac{\partial^{2}}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma, \tau, .)) \Big|_{\sigma = \tau = 0} &= \int_{a}^{b} \left(g(-R(\eta, \dot{\gamma})\dot{\gamma}, \xi) + g(\nabla_{\frac{\partial}{\partial t}}^{\Gamma} \xi, \nabla_{\frac{\partial}{\partial t}}^{\Gamma} \eta) \right) dt \\ &= -\int_{a}^{b} g(\nabla_{\frac{\partial}{\partial t}}^{\Gamma} \nabla_{\frac{\partial}{\partial t}}^{\Gamma} \eta + R(\eta, \dot{\gamma})\dot{\gamma}, \xi) dt. \end{split}$$

Definition 85: Let $\gamma: I \to M$ be a geodesic. A vector field $\not \in \mathcal{I}$ along γ is called **Jacobi field** if it satisfies

$$\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\eta + R(\eta,\dot{\gamma})\dot{\gamma} = 0.$$

Recall $\exp_p: U \subset T_pM \to M$, $\exp_p(X) = \gamma_X(1)$ where $\gamma_X: [0,1] \to M$ is the unique geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}_X(0) = X$.

Now partially integrate, use that ξ,η vanish at the end points and $abla^\gamma\dot{\gamma}=0$ te see that the first term vanishes.

Using torsion-freeness again and take $\sigma= au=0$ we end up with

$$\frac{\partial^{2}}{\partial \sigma \partial \tau} \mathcal{L}(\Gamma(\sigma, \tau, .)) \Big|_{\sigma = \tau = 0} = \int_{a}^{b} \left(g(-R(\eta, \dot{\gamma})\dot{\gamma}, \xi) + g(\nabla^{\Gamma}_{\frac{\partial}{\partial t}} \xi, \nabla^{\Gamma}_{\frac{\partial}{\partial t}} \eta) \right) dt
= -\int_{a}^{b} g(\nabla^{\Gamma}_{\frac{\partial}{\partial t}} \nabla^{\Gamma}_{\frac{\partial}{\partial t}} \eta + R(\eta, \dot{\gamma})\dot{\gamma}, \xi) dt.$$

Definition 85: Let $\gamma: I \to M$ be a geodesic. A vector field ξ along γ is called **Jacobi field** if it satisfies

$$\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\nabla^{\Gamma}_{\frac{\partial}{\partial t}}\eta + R(\eta,\dot{\gamma})\dot{\gamma} = 0.$$

Recall $\exp_p: U \subset T_pM \to M$, $\exp_p(X) = \gamma_X(1)$ where $\gamma_X: [0,1] \to M$ is the unique geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}_X(0) = X$.

If (M,g) is a complete metric space, then $U = T_p M$.

Conjugated Points

Proposition 86: (i) Let $\gamma:I\to M$ be a geodesic and ξ a Jacobi field along $\gamma.$

Then

$$\xi(t) = \xi_0(t) + (a+bt)\dot{\gamma}(t)$$

for a Jacobi field ξ_0 along γ with $g(\xi_0(t),\dot{\gamma}(t))\equiv 0$.

(ii) Let $\exp_p: U \subset T_pM \to M$ be the exponential map at $p \in M$, U open starshaped Its differential

$$d_X \exp_p : T_X(T_pM) = T_pM \to T_{\exp_p(X)}M$$

can be described as follows. For $Y \in T_p$ consider the Jacobi field η along the geodesic $\gamma_X : [0,1] \to M$, with $\gamma_X(0) = p_i\dot{\gamma}(0) = X$ with initial conditions

$$\eta(0) = 0, \quad \nabla_{\dot{\gamma}} \eta(0) = Y.$$

Then

$$d_X \exp_p(Y) = \eta(1).$$
 q. to $\exp_p(X) = f_X(1)$

Conjugated Points