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Jacobi Fields

Definition 85: Let v:/— M be a geodesic. A vector field £
along v is called Jacobi field if it satisfies

Vi Vi 1+ R(n,3)7 = 0.

We had

Proposition 86: (i) Let v : / — M be a geodesic and £ a Jacobi
field along ~.

Then

§(t) = &o(t) + (a+ bt)3(1)
for a Jacobi field &y along v with g(&o(t),5(t)) = 0.
(ii) Let exp, : U C T,M — M be the exponemntial map at
p € M, U open starshaped lts differential
dX epr . Tx(TpM) = TPM — TexpP(X)M
can be described as follows. For Y € T, consider the Jacobi field 7
along the geodesic yx : [0,1] — M, with vx(0) = p 4(0) = X with
initial conditions dxz(gf,,(\')agz@,
n(0)=0. V:n(0)=Y.



Conjugated Points
Definition 87: X € T,M is called conjugated to p if dx exp, is
not injective. Accordingly, a point ¢ = -y(a) is conjugated to a
point p = (b) if ¢ = exp,(X), v = 7x up to translation and X is
conjugated to p.
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That means, there is a non-trivial Jacobi field Y along

x :[0,1] = M with Y(0) = Y(1) = 0. Hence, if g is conjugated
to p along ~ then p is conjugated to g along 7 - the geodesic ~y
with a opposite parametrization.

In particular, if y(a) and ~(b) are not conjugated along the
geodesic «y than a Jacobi field along v is uniquely determined by its
values at a and b.
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Definition 87: X € T,M is called conjugated to p if dx exp, is
not injective. Accordingly, a point ¢ = -y(a) is conjugated to a
point p = (b) if ¢ = exp,(X), v = 7x up to translation and X is
conjugated to p.

That means, there is a non-trivial Jacobi field Y along

vx : [0,1] = M with Y(0) = Y(1) = 0. Hence, if q is conjugated
to p along ~ then p is conjugated to g along 7 - the geodesic ~y
with a opposite parametrization.

In particular, if y(a) and ~(b) are not conjugated along the
geodesic «y than a Jacobi field along v is uniquely determined by its
values at a and b.

Proposition 88: Let (M, g) be a Riemannian manifold with
non-positive sectional curvature. Then there are no conjugate
points along any geodesic.

In particular, for any p € M the differential of the exponential map
dx expp : TpM — Texpp/\/l is an isomorphism.



Conjugated Points

Proof: Let v : [a,b] — M be a geodesic. We define the index
form of « on

C(v*TM) := {X € C°(y* TM)|X piecewise smooth, X(a) =0 = X(b)}
by
106, ¥) = [ (693X, 94X) - g(ROX AV, v))ae
Notice that by assur;ption -
g(R(X,7)1,X) <0 —

Hence /(X, X) > 0 for any X with V5 # 0.

If there were a < tyg < t; < b and a non-trivial Jacobi field X along
Ylito,tr] With X(to) = X(t1) = 0 then we would find (continuing X
by zero outside [to, t1])



Conjugated Points

Proof: Let v : [a,b] — M be a geodesic. We define the index
form of « on

C(v*TM) := {X € C°(y* TM)|X piecewise smooth, X(a) =0 = X(b)}
by

b

I(X,Y) = / (6(V4X, V5 X) — g(ROX,4)3, Y))dt

a

Notice that by assumption
g(R(X,7)7,X) <0

Hence /(X, X) > 0 for any X with V5 # 0.
If there were a < tyg < t; < b and a non-trivial Jacobi field X along

Vito,u] With X(o) = X(t1) = 0 then we would find (continuing X
by zero outside [to, t1])

0<I0X.X) = [ (&(V5X, ¥5X) + g(ROX. )3, X)) o

_ /tl (g(V4 VX + R(X, %)y, X))dt =0 O

to



Hadamard Manifolds

Manifolds with non-positive sectional curvatire are called
Hadamard manifolds. Important examples are flat manifolds
(K = 0) and hyperbolic space (K = —1).
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Theorem 89: Let (M, g) be a complete Riemannian manifold.
(1) Assume the sectional curvature is non-positive. Then for any
point the exponential map exp, : T,M — M is a covering of M. In
particular, it is isomorphic to the universal covering of M and

7 (M) = 0 for any k > 2, i.e. any continuous map u : Sk — M is
homotopic to a constant map. If M was simply connected, exp,, is
diffeomorphism for any p.
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Theorem 89: Let (M, g) be a complete Riemannian manifold.
(1) Assume the sectional curvature is non-positive. Then for any
point the exponential map exp, : T,M — M is a covering of M. In
particular, it is isomorphic to the universal covering of M and

7 (M) = 0 for any k > 2, i.e. any continuous map u : Sk — M is
homotopic to a constant map. If M was simply connected, exp,, is
diffeomorphism for any p.

(2) Assume in addition that K is constant, K < 0. Then
(Tp/\/l,exp;’; g) is isometric to the euclidean space if K =0 or

(H", \?gy) for an appropriate A if K < 0. e C&ﬁ%@k



Hadamard Manifolds
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Positive Curvature

If K > 0 on some tangent plane at a point of the geodesic
containing 7 the index form can become indefinite or degenerate.
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Theorem 90: Assume that (M, g) is a complete Riemannian
manifold with one of the following bounds on its curvature: (i) For
the sectional curvature we have

1
K> =2 O
(i) the Ricci curvature satisfies

n—1

Ric(v,v) > =2

for all unit tangent vectors v € T, M.



Positive Curvature

If K > 0 on some tangent plane at a point of the geodesic
containing 7 the index form can become indefinite or degenerate.

Theorem 90: Assume that (M, g) is a complete Riemannian
manifold with one of the following bounds on its curvature: (i) For
the sectional curvature we have
1
K> =2 O

. petr 4Gy B
(i) the Ricci curvature satisfies &C—% ;(f /]F) el

Ric(v,v) > " };21 Fetvw).» Zg (Rle; )y «)

for all unit tangent vectors v € T, M.
Then the diameter of M is bounded by

diam(M, g) < 7R.

In particular, M is compact and its fundamental group is finite.



Index Lemma

We need the following Lemma on the index:

Lemma 91: Assume for a geodesic v : [a, b] — M that there is
no t € [a, b] such that y(t) is conjugated to ~(a) along 7. Let X a
piecewise smooth vector field along ~ and & be the unique Jacobi
field such that {(a) = X(a) = 0 and £{(b) = X(b). Then

I(&,€) < I(X, X)

and equality holds if and only if X =¢. 3 Jacels Jo
Pd = (X-5)()=0. A pia th suetl. = T(X-3,3)= 0
9 o< T(K-3,x-3)= I(X~Z X*3) =T(xx)-153)

’/’C’f’g"‘“’?" 'a%ﬁﬁ@c/ﬁ,wo((l,zm/},c’bjd,/
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Corollary: Let v : [0, T) — M be a geodesic and (ty) conjugate
to 7(0) along 7. Then ~[j ¢ is not minimal for any t > to.
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I(X,X)=0on[0,¢t].
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the Jacobi field along 7|, —s, 1,46 With Z(to — 0) = J(to — 0),
Z(tg+0) = 0.
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Positive Curvature
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Positive Curvature

X is not a Jacobi field along 7|[¢—s,¢+5]. Hence on [ty — 4, to + J]

(Z,2) < I(X, X).



Positive Curvature

X is not a Jacobi field along 7|[¢—s,¢+5]. Hence on [ty — 4, to + J]
(Z,2) < I(X,X).=o

Since Y = X outside this interval we have /(Y,Y) < I(X,X) =0
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Proof of Bonnet's Theorem

Consider a geodesic 7 : [0, L] — M. Let X be vector field along ~,
X L 4 and V45X = 0. Define Y(t) :=sin(nt/L). Then
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Consider a geodesic 7 : [0, L] — M. Let X be vector field along ~,
X L 4 and V45X = 0. Define Y(t) :=sin(nt/L). Then

L
Y, Y) == [ e(Y. VY + R(Y.4)3)dt
0

= [ sin(e /02212 - g(ROX A X))

Let L > 7R. Then K > 1/R? implies hat I(Y,Y)<O.
Assume  has no conjugate points. Then the unique Jacobi field J
with Z(0) = Y(0) =0 and Z(L) = Y(L) =0 (i.e. J =0) would
satisfy

0=1(J,J)<I(Y,Y)<0
giving a contradiction.

Hence ~ has conjugate points and is not minimal. [J



Proof of Bonnet's Theorem



Symplectic Manifolds

Definition 90: Let M be a smooth manifold. A symplectic
structure of symplectic form on M is a closed, non-degenerate
2-form w € Q?(M), i.e. dw =0 and for all pe M

XeTM= Xwe T;M

is an isomorphism.

Lemma 91: (1) The non-degeneracy implies that dim M = 2n is
even.

(2) It is equivalent to

W=wA..ANw#0

is a volume form. In particular, M has to be oriented.
(3) If M is a closed manifold, then

by(M) := dim H35(M) > 1.
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