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Jacobi Fields
Definition 85: Let γ : I → M be a geodesic. A vector field ξ
along γ is called Jacobi field if it satisfies

∇Γ
∂
∂t
∇Γ

∂
∂t
η + R(η, γ̇)γ̇ = 0.

We had
Proposition 86: (i) Let γ : I → M be a geodesic and ξ a Jacobi
field along γ.
Then

ξ(t) = ξ0(t) + (a + bt)γ̇(t)
for a Jacobi field ξ0 along γ with g(ξ0(t), γ̇(t)) ≡ 0.
(ii) Let expp : U ⊂ TpM → M be the exponemntial map at
p ∈ M, U open starshaped Its differential

dX expp : TX (TpM) = TpM → Texpp(X)M
can be described as follows. For Y ∈ Tp consider the Jacobi field η
along the geodesic γX : [0, 1]→ M, with γX (0) = p γ̇(0) = X with
initial conditions

η(0) = 0, ∇γ̇η(0) = Y .
Then

dX expp(Y ) = η(1).



Conjugated Points
Definition 87: X ∈ TpM is called conjugated to p if dX expp is
not injective. Accordingly, a point q = γ(a) is conjugated to a
point p = γ(b) if q = expp(X ), γ = γX up to translation and X is
conjugated to p.

That means, there is a non-trivial Jacobi field Y along
γX : [0, 1]→ M with Y (0) = Y (1) = 0. Hence, if q is conjugated
to p along γ then p is conjugated to q along γ̄ - the geodesic γ
with a opposite parametrization.
In particular, if γ(a) and γ(b) are not conjugated along the
geodesic γ than a Jacobi field along γ is uniquely determined by its
values at a and b.

Proposition 88: Let (M, g) be a Riemannian manifold with
non-positive sectional curvature. Then there are no conjugate
points along any geodesic.

In particular, for any p ∈ M the differential of the exponential map
dX expp : TpM → Texpp M is an isomorphism.
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Conjugated Points
Proof: Let γ : [a, b]→ M be a geodesic. We define the index
form of γ on
C(γ∗TM) := {X ∈ C0(γ∗TM)|X piecewise smooth, X (a) = 0 = X (b)}
by

I(X ,Y ) :=
∫ b

a

(
g(∇γ̇X ,∇γ̇X )− g(R(X , γ̇)γ̇,Y )

)
dt

Notice that by assumption
g(R(X , γ̇)γ̇,X ) ≤ 0

Hence I(X ,X ) > 0 for any X with ∇γ̇ 6= 0.
If there were a ≤ t0 < t1 ≤ b and a non-trivial Jacobi field X along
γ|[t0,t1] with X (t0) = X (t1) = 0 then we would find (continuing X
by zero outside [t0, t1])

0 < I(X ,X ) =
∫ t1

t0

(
g(∇γ̇X ,∇γ̇X ) + g(R(X , γ̇)γ̇,X )

)
dt

= −
∫ t1

t0

(
g(∇γ̇∇γ̇X + R(X , γ̇)γ̇,X )

)
dt = 0 �
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Hadamard Manifolds

Manifolds with non-positive sectional curvatire are called
Hadamard manifolds. Important examples are flat manifolds
(K = 0) and hyperbolic space (K = −1).

Theorem 89: Let (M, g) be a complete Riemannian manifold.
(1) Assume the sectional curvature is non-positive. Then for any
point the exponential map expp : TpM → M is a covering of M. In
particular, it is isomorphic to the universal covering of M and
πk(M) = 0 for any k ≥ 2, i.e. any continuous map u : Sk → M is
homotopic to a constant map. If M was simply connected, expp is
diffeomorphism for any p.
(2) Assume in addition that K is constant, K ≤ 0. Then
(TpM, exp∗

p g) is isometric to the euclidean space if K = 0 or
(Hn, λ2gH) for an appropriate λ if K < 0.
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Positive Curvature
If K > 0 on some tangent plane at a point of the geodesic γ
containing γ̇ the index form can become indefinite or degenerate.

Theorem 90: Assume that (M, g) is a complete Riemannian
manifold with one of the following bounds on its curvature: (i) For
the sectional curvature we have

K ≥ 1
R2 , or

(ii) the Ricci curvature satisfies

Ric(v , v) ≥ n − 1
R2

for all unit tangent vectors v ∈ TpM.
Then the diameter of M is bounded by

diam(M, g) ≤ πR.

In particular, M is compact and its fundamental group is finite.
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Index Lemma
We need the following Lemma on the index:

Lemma 91: Assume for a geodesic γ : [a, b]→ M that there is
no t ∈ [a, b] such that γ(t) is conjugated to γ(a) along γ. Let X a
piecewise smooth vector field along γ and ξ be the unique Jacobi
field such that ξ(a) = X (a) = 0 and ξ(b) = X (b). Then

I(ξ, ξ) ≤ I(X ,X )

and equality holds if and only if X = ξ.
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Index Lemma

Corollary: Let γ : [0,T )→ M be a geodesic and γ(t0) conjugate
to γ(0) along γ. Then γ|[0,t] is not minimal for any t > t0.

Proof: W.l.o.g. there are no conjugate points in γ|[0,t0).
Let J 6= 0 be a Jacobi field along γ|[0,t0] such that
J(0) = J(t0) = 0 and extend it to vector field X along γ by zero.
I(X ,X ) = 0 on [0, t].
δ > 0 small, so that no conjugate points on γ|[t0−δ,t0+δ]. Let Z be
the Jacobi field along γ|[t0−δ,t0+δ] with Z (t0 − δ) = J(t0 − δ),
Z (t0 + δ) = 0. Define

Y (t) :=


J(t) for t ∈ [0, t0 − δ]
Z (t) for t ∈ [t0 − δ, t0 + δ]
0 for t > t0 + δ
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Positive Curvature

X is not a Jacobi field along γ|[t0−δ,t0+δ]. Hence on [t0 − δ, t0 + δ]

I(Z ,Z ) < I(X ,X ).

Since Y = X outside this interval we have I(Y ,Y ) < I(X ,X ) = 0
on [0, t]. �
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Proof of Bonnet’s Theorem
Consider a geodesic γ : [0, L]→ M. Let X be vector field along γ,
X ⊥ γ̇ and ∇γ̇X = 0. Define Y (t) := sin(πt/L). Then

I(Y ,Y ) = −
∫ L

0
g(Y ,∇2

γ̇Y + R(Y , γ̇)γ̇)dt

=
∫ L

0
(sin(π/L))2(π2/L2 − g(R(X , γ̇)γ̇,X ))dt

Let L ≥ πR. Then K ≥ 1/R2 implies hat I(Y ,Y ) ≤ 0.
Assume γ has no conjugate points. Then the unique Jacobi field J
with Z (0) = Y (0) = 0 and Z (L) = Y (L) = 0 (i.e. J ≡ 0) would
satisfy

0 = I(J , J) < I(Y ,Y ) ≤ 0

giving a contradiction.
Hence γ has conjugate points and is not minimal. �
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Symplectic Manifolds
Definition 90: Let M be a smooth manifold. A symplectic
structure of symplectic form on M is a closed, non-degenerate
2-form ω ∈ Ω2(M), i.e. dω = 0 and for all p ∈ M

X ∈ TpM 7→ Xyω ∈ T ∗
p M

is an isomorphism.
Lemma 91: (1) The non-degeneracy implies that dim M = 2n is
even.
(2) It is equivalent to

ωn = ω ∧ ... ∧ ω 6= 0

is a volume form. In particular, M has to be oriented.
(3) If M is a closed manifold, then

b2(M) := dim H2
DR(M) ≥ 1.
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