

Differential Geometry II

Curvature and Global Properties of Riemannian Manifolds

Klaus Mohnke

July 7, 2020

Jacobi Fields

Definition 85: Let $\gamma : I \rightarrow M$ be a geodesic. A vector field ξ along γ is called **Jacobi field** if it satisfies

$$\nabla_{\frac{\partial}{\partial t}}^{\Gamma} \nabla_{\frac{\partial}{\partial t}}^{\Gamma} \eta + R(\eta, \dot{\gamma})\dot{\gamma} = 0.$$

We had

Proposition 86: (i) Let $\gamma : I \rightarrow M$ be a geodesic and ξ a Jacobi field along γ .

Then

$$\xi(t) = \xi_0(t) + (a + bt)\dot{\gamma}(t)$$

for a Jacobi field ξ_0 along γ with $g(\xi_0(t), \dot{\gamma}(t)) \equiv 0$.

(ii) Let $\exp_p : U \subset T_p M \rightarrow M$ be the exponential map at $p \in M$, U open starshaped. Its differential

$$d_X \exp_p : T_X(T_p M) = T_p M \rightarrow T_{\exp_p(X)} M$$

can be described as follows. For $Y \in T_p$ consider the Jacobi field η along the geodesic $\gamma_X : [0, 1] \rightarrow M$, with $\gamma_X(0) = p$, $\dot{\gamma}_X(0) = X$ with initial conditions

$$d_X \exp_p(Y) = \eta(1)$$

$$\eta(0) = 0, \quad \nabla_{\dot{\gamma}} \eta(0) = Y.$$

Conjugated Points

Definition 87: $X \in T_p M$ is called **conjugated to p** if $d_X \exp_p$ is not injective. Accordingly, a point $q = \gamma(a)$ is conjugated to a point $p = \gamma(b)$ if $q = \exp_p(X)$, $\gamma = \gamma_X$ up to translation and X is conjugated to p .

Conjugated Points

Definition 87: $X \in T_p M$ is called **conjugated to p** if $d_X \exp_p$ is not injective. Accordingly, a point $q = \gamma(a)$ is conjugated to a point $p = \gamma(b)$ if $q = \exp_p(X)$, $\gamma = \gamma_X$ up to translation and X is conjugated to p .

$$X \exp_p \stackrel{d_X \exp_p(Y(t)) = Y(1) = 0}{\approx} \text{Put to geodesic initial final}$$

That means, there is a non-trivial Jacobi field Y along $\gamma_X : [0, 1] \rightarrow M$ with $Y(0) = Y(1) = 0$. Hence, if q is conjugated to p along γ then p is conjugated to q along $\bar{\gamma}$ - the geodesic γ with an opposite parametrization.

In particular, if $\gamma(a)$ and $\gamma(b)$ are not conjugated along the geodesic γ then a Jacobi field along γ is uniquely determined by its values at a and b .

Conjugated Points

Definition 87: $X \in T_p M$ is called **conjugated to p** if $d\exp_p$ is not injective. Accordingly, a point $q = \gamma(a)$ is conjugated to a point $p = \gamma(b)$ if $q = \exp_p(X)$, $\gamma = \gamma_X$ up to translation and X is conjugated to p .

That means, there is a non-trivial Jacobi field Y along $\gamma_X : [0, 1] \rightarrow M$ with $Y(0) = Y(1) = 0$. Hence, if q is conjugated to p along γ then p is conjugated to q along $\bar{\gamma}$ - the geodesic γ with an opposite parametrization.

In particular, if $\gamma(a)$ and $\gamma(b)$ are not conjugated along the geodesic γ then a Jacobi field along γ is uniquely determined by its values at a and b .

Proposition 88: Let (M, g) be a Riemannian manifold with non-positive sectional curvature. Then there are no conjugate points along any geodesic.

Conjugated Points

Definition 87: $X \in T_p M$ is called **conjugated to p** if $d_X \exp_p$ is not injective. Accordingly, a point $q = \gamma(a)$ is conjugated to a point $p = \gamma(b)$ if $q = \exp_p(X)$, $\gamma = \gamma_X$ up to translation and X is conjugated to p .

That means, there is a non-trivial Jacobi field Y along $\gamma_X : [0, 1] \rightarrow M$ with $Y(0) = Y(1) = 0$. Hence, if q is conjugated to p along γ then p is conjugated to q along $\bar{\gamma}$ - the geodesic γ with an opposite parametrization.

In particular, if $\gamma(a)$ and $\gamma(b)$ are not conjugated along the geodesic γ then a Jacobi field along γ is uniquely determined by its values at a and b .

Proposition 88: Let (M, g) be a Riemannian manifold with non-positive sectional curvature. Then there are no conjugate points along any geodesic.

In particular, for any $p \in M$ the differential of the exponential map $d_X \exp_p : T_p M \rightarrow T_{\exp_p} M$ is an isomorphism.

Conjugated Points

Proof: Let $\gamma : [a, b] \rightarrow M$ be a geodesic. We define the **index form** of γ on

$\mathcal{C}(\gamma^* TM) := \{X \in C^0(\gamma^* TM) \mid X \text{ piecewise smooth, } X(a) = 0 = X(b)\}$
by

$$I(X, Y) := \int_a^b (g(\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X) - g(R(\underline{X}, \dot{\gamma})\dot{\gamma}, Y)) dt$$

Notice that by assumption

$$g(R(X, \dot{\gamma})\dot{\gamma}, X) \leq 0 \quad \text{—}$$

Hence $I(X, X) > 0$ for any X with $\nabla_{\dot{\gamma}} \neq 0$.

If there were $a \leq t_0 < t_1 \leq b$ and a non-trivial Jacobi field X along $\gamma|_{[t_0, t_1]}$ with $X(t_0) = X(t_1) = 0$ then we would find (continuing X by zero outside $[t_0, t_1]$)

Conjugated Points

Proof: Let $\gamma : [a, b] \rightarrow M$ be a geodesic. We define the **index form** of γ on

$\mathcal{C}(\gamma^* TM) := \{X \in C^0(\gamma^* TM) \mid X \text{ piecewise smooth, } X(a) = 0 = X(b)\}$
by

$$I(X, Y) := \int_a^b (g(\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X) - g(R(X, \dot{\gamma})\dot{\gamma}, Y)) dt$$

Notice that by assumption

$$g(R(X, \dot{\gamma})\dot{\gamma}, X) \leq 0$$

Hence $I(X, X) > 0$ for any X with $\nabla_{\dot{\gamma}} \neq 0$.

If there were $a \leq t_0 < t_1 \leq b$ and a non-trivial Jacobi field X along $\gamma|_{[t_0, t_1]}$ with $X(t_0) = X(t_1) = 0$ then we would find (continuing X by zero outside $[t_0, t_1]$)

$$\begin{aligned} 0 < I(X, X) &= \int_{t_0}^{t_1} (g(\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X) + g(R(X, \dot{\gamma})\dot{\gamma}, X)) dt \\ &= - \int_{t_0}^{t_1} (g(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X + R(X, \dot{\gamma})\dot{\gamma}, X)) dt = 0 \quad \square \end{aligned}$$

Hadamard Manifolds

Manifolds with non-positive sectional curvature K are called **Hadamard manifolds**. Important examples are flat manifolds ($K = 0$) and hyperbolic space ($K = -1$).

Hadamard Manifolds

Manifolds with non-positive sectional curvature are called **Hadamard manifolds**. Important examples are flat manifolds ($K = 0$) and hyperbolic space ($K = -1$).

Theorem 89: Let (M, g) be a complete Riemannian manifold.

(1) Assume the sectional curvature is non-positive. Then for any point the exponential map $\exp_p : T_p M \rightarrow M$ is a covering of M . In particular, it is isomorphic to the universal covering of M and $\pi_k(M) = 0$ for any $k \geq 2$, i.e. any continuous map $u : S^k \rightarrow M$ is homotopic to a constant map. If M was simply connected, \exp_p is a diffeomorphism for any p .

Hadamard Manifolds

Manifolds with non-positive sectional curvature are called **Hadamard manifolds**. Important examples are flat manifolds ($K = 0$) and hyperbolic space ($K = -1$).

Theorem 89: Let (M, g) be a complete Riemannian manifold.

(1) Assume the sectional curvature is non-positive. Then for any point the exponential map $\exp_p : T_p M \rightarrow M$ is a covering of M . In particular, it is isomorphic to the universal covering of M and $\pi_k(M) = 0$ for any $k \geq 2$, i.e. any continuous map $u : S^k \rightarrow M$ is homotopic to a constant map. If M was simply connected, \exp_p is a diffeomorphism for any p .

(2) Assume in addition that K is constant, $K \leq 0$. Then

$(T_p M, \exp_p^* g)$ is isometric to the Euclidean space if $K = 0$ or $(\mathbb{H}^n, \lambda^2 g_{\mathbb{H}})$ for an appropriate λ if $K < 0$.

Hadamard Manifolds

Proof: (1) On $T_p M$ define $h = \exp_p^* g$ existing due to \exp_p being a diffeomorphism. geodesics w.r.t. h starting at $0 \in T_p M$ are the lines through $\partial_x \exp_p$ for all $x \in \mathbb{R}^n$.

Given $\gamma: [0, L] \rightarrow T_p M$ to $\gamma(t) = tX$ starting $\gamma(0) = 0 \in T_p M$ $\Rightarrow \gamma(t) = \exp_p(tX) = \gamma(tX) = \gamma(tX) = \gamma(tX)$
 $\Rightarrow \text{arc}(T_p M, h)$ is complete through 0 &

(2) $(N, h) \xrightarrow{f} (N, g)$ complete, $\not\exists$ local isometry $\ell_g|_{N \text{ connected}} = \ell_g(\gamma|_{[0, L]})$

Claim: $(T_p M, h)$ is not complete. $\forall p \in h$ \exists open ball $U \subset h$ s.t.

(2) $\exists: \mathcal{G}^{-1}(h) = \bigcup_{q \in \mathcal{G}^{-1}(h)} V_q \rightarrow \mathcal{G}(V_q): V_q \rightarrow h$ al. diffeo by $V_q \cap V_{q'} = \emptyset$ $\forall q \neq q'$.

Exercise: See Cheeger/Ebin $\not\exists h$.

h.c.i. $1 \rightarrow (M, h)$

- i

... open ...

Hadamard Manifolds

We know: $p \in M$ & $q \in \Phi^{-1}(p)$ $\exists U_q \subset M$ open
nbhd of p in M and $V_q \subset N$ of q open ishd.

s.t. $\Phi|_{V_q}: V_q \cong U_q$.

aim: $\exists W \subset M$ open nbhd. of p s.t. $\Phi^{-1}(W) = \bigcup_{q \in \Phi^{-1}(p)} W_q$
s.t. $\Phi|_{W_q}: W_q \rightarrow W$

Positive Curvature

If $K > 0$ on some tangent plane at a point of the geodesic γ containing $\dot{\gamma}$ the index form can become indefinite or degenerate.

Positive Curvature

If $K > 0$ on some tangent plane at a point of the geodesic γ containing $\dot{\gamma}$ the index form can become indefinite or degenerate.

Theorem 90: Assume that (M, g) is a complete Riemannian manifold with one of the following bounds on its curvature: (i) For the sectional curvature we have

$$K \geq \frac{1}{R^2}, \text{ or}$$

(ii) the Ricci curvature satisfies

$$Ric(v, v) \geq \frac{n-1}{R^2}$$

for all unit tangent vectors $v \in T_p M$.

Positive Curvature

If $K > 0$ on some tangent plane at a point of the geodesic γ containing $\dot{\gamma}$ the index form can become indefinite or degenerate.

Theorem 90: Assume that (M, g) is a complete Riemannian manifold with one of the following bounds on its curvature: (i) For the sectional curvature we have

$$K \geq \frac{1}{R^2}, \text{ or}$$

(ii) the Ricci curvature satisfies

$$Ric(v, v) \geq \frac{n-1}{R^2}$$

Recall : $p \in M$, $\{e_i\}$ on B
of $(T_p M, g_p)$, $v \in T_p M$

$$Ric(v, w) := \sum_{i=1}^n g(R(e_i, v)w, e_i)$$

for all unit tangent vectors $v \in T_p M$.

Then the diameter of M is bounded by

$$\text{diam}(M, g) \leq \pi R.$$

In particular, M is compact and its fundamental group is finite.

Index Lemma

We need the following Lemma on the index:

Lemma 91: Assume for a geodesic $\gamma : [a, b] \rightarrow M$ that there is no $t \in [a, b]$ such that $\gamma(t)$ is conjugated to $\gamma(a)$ along γ . Let X a piecewise smooth vector field along γ and ξ be the unique Jacobi field such that $\xi(a) = X(a) = 0$ and $\xi(b) = X(b)$. Then

$$I(\xi, \xi) \leq I(X, X)$$

and equality holds if and only if $X = \xi$. ξ Jacobi field

Proof: $(X - \xi)(b) = 0$. & piece wise smooth. $\Rightarrow I(X - \xi, \xi) = 0$

$$\Rightarrow 0 \leq I(X - \xi, X - \xi) = I(X - \xi, X + \xi) = I(X, X) - I(\xi, \xi)$$

Stuff. to show: For any piece wise smooth vector field Y along γ , with $Y(a) = Y(b) = 0$ we have $I(Y, Y) \geq 0$ & " $\Leftrightarrow Y = 0$ ".

There is an orthonormal frame $\{E_i\}$ along γ , $\nabla_{\dot{\gamma}} E_i = 0$.

$Y = \sum y_i \cdot E_i$ & the index form & Jacobi equation translate into

Index Lemma

$$y: [a, b] \rightarrow \mathbb{R}^n \quad R(\sum y_i E_i, \dot{y}) \dot{y} = \sum A_{ij} y_j E_i$$

$$A: [a, b] \rightarrow \text{Symm}(n, \mathbb{R})$$

$$-y''(t) + A(t)y(t) = 0 \quad (*)$$

$$I(x, y) = \int_a^b (\langle x', y' \rangle + \langle A(t)x, y \rangle) dt$$

Ass: If y satisfies $(*)$ & $y(a) = y(b) = 0$ for some $t \in (a, b)$
 Then $y \equiv 0$.

Claim: For all x with $x(a) = x(b) = 0$ $I(x, x) \geq 0$, x piecewise smooth
 & $x' = 0 \Leftrightarrow x \equiv 0$.

Proof: $x(a) = x(b) = 0$. Define $(u_i)_{i=1}^n$, u_i satisfies $(*)$
 $u_i(a) = 0$, $u_i(b) = e_i$.

Claim: $x(t) = \sum f_i u_i$ if piecewise smooth on (a, b) , $f_i'(a)$ exists.
 $f_i(b) = 0$.

$$u_i(a) = 0 \rightarrow \frac{u_i}{t-a} =: v_i \text{ is differentiable. (also at } a)$$

$$\Rightarrow x(t) = \sum q_i(t) v_i(t) = \sum q_i(t)(t-a) u_i(t)$$

Index Lemma

also $\underbrace{(\langle u_i^!, u_j \rangle - \langle u_i, u_j^! \rangle)}_{\text{constant}}^! = \langle A(t)u_i, u_j \rangle - \langle u_i, A(t)u_j \rangle = 0$ at $t=a \Rightarrow 0 \Leftarrow (\star)$

$$x'(t) = \sum (f_i^! u_i + f_i u_i^!)$$

$$I(x, x) = \sum \int f_i^! f_j^! \langle u_i, u_j \rangle + \underline{f_i^! f_j \langle u_i, u_j^! \rangle} + f_i f_j^! \langle u_i^!, u_j \rangle + \underline{f_i f_j \langle u_i^!, u_j^! \rangle} + \underline{f_i f_j \langle A u_i, u_j \rangle} \text{ at } = (\star)$$

$$\underline{\sum \int f_i f_j \langle u_i^!, u_j \rangle \text{ at}} = - \sum \int f_i^! f_j \langle u_i^!, u_j \rangle + f_i f_j^! \langle u_i^!, u_j \rangle + f_i f_j \langle u_i^!, u_j^! \rangle$$

$$= - \sum \int \underline{f_i^! f_j \langle u_i, u_j^! \rangle} + f_i f_j^! \langle u_i^!, u_j \rangle + \underline{f_i f_j \langle A u_i, u_j \rangle}$$

$$\cancel{(\star)} = \sum_{i,j} \int f_i^! f_j \langle u_i, u_j \rangle = \int \|f\|_g^2 \geq 0 \quad g_{ij} = \langle u_i, u_j \rangle \quad \text{Symmetric & positive definite}$$

$$= 0 \Leftrightarrow f^! \equiv 0 \quad \& \text{ since } f(0) = 0 \Rightarrow f \equiv 0. \quad \square$$

Index Lemma

Corollary: Let $\gamma : [0, T) \rightarrow M$ be a geodesic and $\gamma(t_0)$ conjugate to $\gamma(0)$ along γ . Then $\gamma|_{[0,t]}$ is not minimal for any $t > t_0$.

Index Lemma

Corollary: Let $\gamma : [0, T) \rightarrow M$ be a geodesic and $\gamma(t_0)$ conjugate to $\gamma(0)$ along γ . Then $\gamma|_{[0,t]}$ is not minimal for any $t > t_0$.

Proof: W.l.o.g. there are no conjugate points in $\gamma|_{[0,t_0]}$.

Index Lemma

Corollary: Let $\gamma : [0, T) \rightarrow M$ be a geodesic and $\gamma(t_0)$ conjugate to $\gamma(0)$ along γ . Then $\gamma|_{[0,t]}$ is not minimal for any $t > t_0$.

Proof: W.l.o.g. there are no conjugate points in $\gamma|_{[0,t_0]}$.

Let $J \neq 0$ be a Jacobi field along $\gamma|_{[0,t_0]}$ such that

$J(0) = J(t_0) = 0$ and extend it to vector field X along γ by zero.

$I(X, X) = 0$ on $[0, t]$.

Index Lemma

Corollary: Let $\gamma : [0, T] \rightarrow M$ be a geodesic and $\gamma(t_0)$ conjugate to $\gamma(0)$ along γ . Then $\gamma|_{[0,t]}$ is not minimal for any $t > t_0$.

Proof: W.l.o.g. there are no conjugate points in $\gamma|_{[0,t_0]}$.

Let $J \neq 0$ be a Jacobi field along $\gamma|_{[0,t_0]}$ such that

$J(0) = J(t_0) = 0$ and extend it to vector field X along γ by zero.

$I(X, X) = 0$ on $[0, t]$.

$\delta > 0$ small, so that no conjugate points on $\gamma|_{[t_0-\delta, t_0+\delta]}$. Let Z be the Jacobi field along $\gamma|_{[t_0-\delta, t_0+\delta]}$ with $Z(t_0 - \delta) = J(t_0 - \delta)$, $Z(t_0 + \delta) = 0$.

Index Lemma

Corollary: Let $\gamma : [0, T] \rightarrow M$ be a geodesic and $\gamma(t_0)$ conjugate to $\gamma(0)$ along γ . Then $\gamma|_{[0,t]}$ is not minimal for any $t > t_0$.

Proof: W.l.o.g. there are no conjugate points in $\gamma|_{[0,t_0]}$.

Let $J \neq 0$ be a Jacobi field along $\gamma|_{[0,t_0]}$ such that

$J(0) = J(t_0) = 0$ and extend it to vector field X along γ by zero.

$I(X, X) = 0$ on $[0, t]$.

$\delta > 0$ small, so that no conjugate points on $\gamma|_{[t_0-\delta, t_0+\delta]}$. Let Z be the Jacobi field along $\gamma|_{[t_0-\delta, t_0+\delta]}$ with $Z(t_0 - \delta) = J(t_0 - \delta)$, $Z(t_0 + \delta) = 0$. Define

$$Y(t) := \begin{cases} J(t) & \text{for } t \in [0, t_0 - \delta] \\ Z(t) & \text{for } t \in [t_0 - \delta, t_0 + \delta] \\ 0 & \text{for } t > t_0 + \delta \end{cases}$$

Index Lemma

Corollary: Let $\gamma : [0, T] \rightarrow M$ be a geodesic and $\gamma(t_0)$ conjugate to $\gamma(0)$ along γ . Then $\gamma|_{[0,t]}$ is not minimal for any $t > t_0$.

Proof: W.l.o.g. there are no conjugate points in $\gamma|_{[0,t_0]}$.

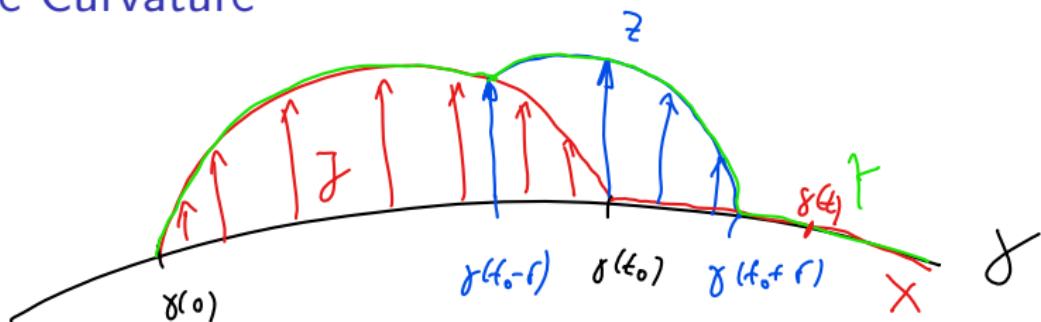
Let $J \neq 0$ be a Jacobi field along $\gamma|_{[0,t_0]}$ such that

$J(0) = J(t_0) = 0$ and extend it to vector field X along γ by zero.
 $I(X, X) = 0$ on $[0, t]$.

$\delta > 0$ small, so that no conjugate points on $\gamma|_{[t_0-\delta, t_0+\delta]}$. Let Z be the Jacobi field along $\gamma|_{[t_0-\delta, t_0+\delta]}$ with $Z(t_0 - \delta) = J(t_0 - \delta)$,
 $Z(t_0 + \delta) = 0$. Define

$$Y(t) := \begin{cases} J(t) & \text{for } t \in [0, t_0 - \delta] \\ Z(t) & \text{for } t \in [t_0 - \delta, t_0 + \delta] \\ 0 & \text{for } t > t_0 + \delta \end{cases}$$

Positive Curvature



X is not smooth at $t_0 \Rightarrow X$ not Jacobi
 $z \in$ Jacobi & $z(t_0-\delta) = X(t_0-\delta), z(t_0+\delta) = X(t_0+\delta) = 0$

Index lemma

$$\Rightarrow I(z, z) < I(X, X) \text{ on } [t_0-\delta, t_0+\delta]$$
$$+ I(z, z) = I(X, X) \text{ on } (0, t_0-\delta) \quad X=z$$

$$I(z, z) < I(X, X) = 0 \text{ on } (0, t_0+\delta)$$

Positive Curvature

X is not a Jacobi field along $\gamma|_{[t_0-\delta, t_0+\delta]}$. Hence on $[t_0 - \delta, t_0 + \delta]$

$$I(Z, Z) < I(X, X).$$

Positive Curvature

X is not a Jacobi field along $\gamma|_{[t_0-\delta, t_0+\delta]}$. Hence on $[t_0 - \delta, t_0 + \delta]$

$$I(Z, Z) < I(X, X). \text{ } \textcolor{red}{\circ}$$

Since $Y = X$ outside this interval we have $I(Y, Y) < I(X, X) = 0$
on $[0, t]$. \square

% run γ to deform $\gamma \rightsquigarrow \gamma_T$ pinched small Crys: $\gamma_T(t) = \gamma(t)$

$$\mathcal{E}(\gamma_T) = \mathcal{E}(\gamma) + T^2 \underbrace{I(t)}_{< 0} + O(T^3) < \mathcal{E}(\gamma)$$
$$\Rightarrow \mathcal{E}(\gamma_T) < \mathcal{E}(\gamma) \text{ for } T > 0 \text{ small}$$

no linear term in Taylor series since $\gamma = \gamma_0$ is a geodinic!

Proof of Bonnet's Theorem

Consider a geodesic $\gamma : [0, L] \rightarrow M$. Let X be vector field along γ , $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X = 0$. Define $Y(t) := \sin(\pi t/L)$. Then

Proof of Bonnet's Theorem

Consider a geodesic $\gamma : [0, L] \rightarrow M$. Let X be vector field along γ , $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X = 0$. Define $Y(t) := \sin(\pi t/L)$. Then

$$\begin{aligned} I(Y, Y) &= - \int_0^L g(Y, \nabla_{\dot{\gamma}}^2 Y + R(Y, \dot{\gamma})\dot{\gamma}) dt \\ &= \int_0^L (\sin(\pi t/L))^2 (\pi^2/L^2 - g(R(X, \dot{\gamma})\dot{\gamma}, X)) dt \end{aligned}$$

Proof of Bonnet's Theorem

Consider a geodesic $\gamma : [0, L] \rightarrow M$. Let X be vector field along γ , $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X = 0$. Define $Y(t) := \sin(\pi t/L)$. Then

$$\begin{aligned} I(Y, Y) &= - \int_0^L g(Y, \nabla_{\dot{\gamma}}^2 Y + R(Y, \dot{\gamma})\dot{\gamma}) dt \\ &= \int_0^L (\sin(\pi t/L))^2 (\pi^2/L^2 - g(R(X, \dot{\gamma})\dot{\gamma}, X)) dt \end{aligned}$$

Let $L \geq \pi R$. Then $K \geq 1/R^2$ implies that $I(Y, Y) \leq 0$.

Proof of Bonnet's Theorem

Consider a geodesic $\gamma : [0, L] \rightarrow M$. Let X be vector field along γ , $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X = 0$. Define $Y(t) := \sin(\pi t/L)$. Then

$$\begin{aligned} I(Y, Y) &= - \int_0^L g(Y, \nabla_{\dot{\gamma}}^2 Y + R(Y, \dot{\gamma})\dot{\gamma}) dt \\ &= \int_0^L (\sin(\pi t/L))^2 (\pi^2/L^2 - g(R(X, \dot{\gamma})\dot{\gamma}, X)) dt \end{aligned}$$

Let $L \geq \pi R$. Then $K \geq 1/R^2$ implies that $I(Y, Y) \leq 0$.

Assume γ has no conjugate points. Then the unique Jacobi field J with $Z(0) = Y(0) = 0$ and $Z(L) = Y(L) = 0$ (i.e. $J \equiv 0$) would satisfy

$$0 = I(J, J) < I(Y, Y) \leq 0$$

giving a contradiction.

Proof of Bonnet's Theorem

Consider a geodesic $\gamma : [0, L] \rightarrow M$. Let X be vector field along γ , $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X = 0$. Define $Y(t) := \sin(\pi t/L)$. Then

$$\begin{aligned} I(Y, Y) &= - \int_0^L g(Y, \nabla_{\dot{\gamma}}^2 Y + R(Y, \dot{\gamma})\dot{\gamma}) dt \\ &= \int_0^L (\sin(\pi t/L))^2 (\pi^2/L^2 - g(R(X, \dot{\gamma})\dot{\gamma}, X)) dt \end{aligned}$$

Let $L \geq \pi R$. Then $K \geq 1/R^2$ implies that $I(Y, Y) \leq 0$.

Assume γ has no conjugate points. Then the unique Jacobi field J with $Z(0) = Y(0) = 0$ and $Z(L) = Y(L) = 0$ (i.e. $J \equiv 0$) would satisfy

$$0 = I(J, J) < I(Y, Y) \leq 0$$

giving a contradiction.

Hence γ has conjugate points and is not minimal. \square

Proof of Bonnet's Theorem

Symplectic Manifolds

Definition 90: Let M be a smooth manifold. A **symplectic structure** of **symplectic form** on M is a closed, non-degenerate 2-form $\omega \in \Omega^2(M)$, i.e. $d\omega = 0$ and for all $p \in M$

$$X \in T_p M \mapsto X \lrcorner \omega \in T_p^* M$$

is an isomorphism.

Lemma 91: (1) The non-degeneracy implies that $\dim M = 2n$ is even.

(2) It is equivalent to

$$\omega^n = \omega \wedge \dots \wedge \omega \neq 0$$

is a volume form. In particular, M has to be oriented.

(3) If M is a closed manifold, then

$$b_2(M) := \dim H_{DR}^2(M) \geq 1.$$

Symplectic Manifolds

Examples

