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Bonnet’s Theorem

Theorem 90: Assume that (M, g) is a complete connected
Riemannian manifold for which the sectional curvature satisfies

K ≥ 1
R2

Then the diameter of M is bounded by

diam(M, g) ≤ πR.

In particular, M is compact and its fundamental group is finite.



Proof of Bonnet’s Theorem
Consider a geodesic γ : [0, L]→ M. Let X be vector field along γ,
X ⊥ γ̇ and ∇γ̇X = 0. Define Y (t) := sin(πt/L). Then

I(Y ,Y ) = −
∫ L

0
g(Y ,∇2

γ̇Y + R(Y , γ̇)γ̇)dt

=
∫ L

0
(sin(π/L))2(π2/L2 − g(R(X , γ̇)γ̇,X ))dt

Let L ≥ πR. Then K ≥ 1/R2 implies hat I(Y ,Y ) ≤ 0.
Assume γ has no conjugate points. Then the unique Jacobi field J
with Z (0) = Y (0) = 0 and Z (L) = Y (L) = 0 (i.e. J ≡ 0) would
satisfy

0 = I(J , J) < I(Y ,Y ) ≤ 0

giving a contradiction.
Hence γ has conjugate points and is not minimal. �
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Symplectic Manifolds
Definition 92: Let M be a smooth manifold (without boundary,
but not necessarily compact). A symplectic structure of
symplectic form on M is a closed, non-degenerate 2-form
ω ∈ Ω2(M), i.e. dω = 0 and for all p ∈ M

X ∈ TpM 7→ Xyω ∈ T ∗
p M

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:

(1) The non-degeneracy implies that dim M = 2n is even.
(2) It is equivalent to

ωn = ω ∧ ... ∧ ω 6= 0

is a volume form. In particular, M has to be oriented.
(3) If M is a closed manifold, then

b2(M) := dim H2
DR(M) ≥ 1.



Symplectic Manifolds
Definition 92: Let M be a smooth manifold (without boundary,
but not necessarily compact). A symplectic structure of
symplectic form on M is a closed, non-degenerate 2-form
ω ∈ Ω2(M), i.e. dω = 0 and for all p ∈ M

X ∈ TpM 7→ Xyω ∈ T ∗
p M

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:
(1) The non-degeneracy implies that dim M = 2n is even.

(2) It is equivalent to

ωn = ω ∧ ... ∧ ω 6= 0

is a volume form. In particular, M has to be oriented.
(3) If M is a closed manifold, then

b2(M) := dim H2
DR(M) ≥ 1.



Symplectic Manifolds
Definition 92: Let M be a smooth manifold (without boundary,
but not necessarily compact). A symplectic structure of
symplectic form on M is a closed, non-degenerate 2-form
ω ∈ Ω2(M), i.e. dω = 0 and for all p ∈ M

X ∈ TpM 7→ Xyω ∈ T ∗
p M

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:
(1) The non-degeneracy implies that dim M = 2n is even.
(2) It is equivalent to

ωn = ω ∧ ... ∧ ω 6= 0

is a volume form. In particular, M has to be oriented.

(3) If M is a closed manifold, then

b2(M) := dim H2
DR(M) ≥ 1.



Symplectic Manifolds
Definition 92: Let M be a smooth manifold (without boundary,
but not necessarily compact). A symplectic structure of
symplectic form on M is a closed, non-degenerate 2-form
ω ∈ Ω2(M), i.e. dω = 0 and for all p ∈ M

X ∈ TpM 7→ Xyω ∈ T ∗
p M

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:
(1) The non-degeneracy implies that dim M = 2n is even.
(2) It is equivalent to

ωn = ω ∧ ... ∧ ω 6= 0

is a volume form. In particular, M has to be oriented.
(3) If M is a closed manifold, then

b2(M) := dim H2
DR(M) ≥ 1.



Symplectic Manifolds



Examples
(1) R2n ∼= T ∗Rn ∼= Cn: The standard symplectic structure is given
by

ωst =
n∑

k=1
dx2k−1 ∧ dx2k .

With standard coordinates (x1, ..., xn) on Rn and adapted
coordinates (p1, ..., pn, q1, ..., qn) where

(p1, ..., qn) 7→ θ(p1,...,qn) := (q1, ..., qn,
n∑

k=1
pkdqk)

parametrizes T ∗Rn so that with the projection π : T ∗Rn → Rn

π(θ(p1, ..., qn)) = (q1, ..., qn).

and for the cordinate vector fields

θ(p1,...,qn)
( ∂

∂qk

)
= pk(p1, ..., qn) = pk .
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Examples
The identification is given by
(p1, p2, ..., pn, q1, q2, ..., qn) 7→ (x1, x3, ..., x2n−1, x2, x4, ..., x2n) and
the symplectic form

ωst =
n∑

k=1
dpk ∧ dqk = dθ.

θ is called the tautological form on T ∗Rn.

In complex
coordinates Zk = Xk + iYk and the identification

(x1, x2, ..., x2n−1, x2n) 7→ (x1 + ix2, ..., x2n−1 + ix2n)

the symplectic form can be described as

ωst = i
2

n∑
k=1

dZ k ∧ dZ k .

Notice
ωst = <e(〈., 〉)

for the standard Hermitian product on Cn ∼= TzCn, i.e. the Kähler
form.
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Examples

(2) Let A ∈ Ω1(S2n+1; iR) be the connection one form on the total
space of the Hopf bundle S2n+1 → CPn where the connection is
given by the horizontal spaces T h

z S2n+1 which are the orthogonal
complements to the orbits of the S1-action

(z1, ..., zn+1) · g = (z1g , ..., zn+1g).

The curvature FA ∈ Ω2(CPn; iR) defines the symplectic form

ωFS := −iFA,

called Fubini Study form.
(3) Let F be an oriented surface. Any area form on F defines a
symplectic structure on F .



Cotangent Bundles
Let Q be a smooth n-dimensional manifold. The tautological one
form θ ∈ Ω1(T ∗Q) is defined via

θα(X ) := α(dα(X )).

Here π : T ∗ → M is the (smooth) projection, α ∈ T ∗
p M for some

p ∈ M and X ∈ Tα(T ∗M). Then dαπ(X ) ∈ TpM and the
expression on the right hand side makes sense.

Proposition 94: θ is smooth and dθ ∈ Ω2(T ∗M) is a symplectic
form on T ∗M.

Proof:
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Symplectomorphisms
Definition 95: A map ϕ : M1 → M2 between two symplectic
manifolds (Mk , ωk), k = 1, 2 is called a symplectomorphism if
ϕ∗ω2 = ω1.

Remark: Notice that it follows dim M1 ≤ dim M2. The typical
situation is that they are equal and ϕ is a diffeomorphism or at
least an embedding (in the case that M1 is not compact).
Examples: (1) Orientation-preserving euclidean isometries of R2n

are symplectomorphisms
(2) Area-preserving diffeomorphism of oriented surfaces are
symplectomorphisms. In particular, a linaer map A : R2 → R2 is a
symplectomorphism if and only if det A = 1.
(3) Let g : M → N be a diffeomorphism (dim M = dim N). Then
ϕ : T ∗N → T ∗M given by

α ∈ T ∗
p N 7→ (dg−1(p)g)∗α ∈ T ∗

g−1(p)M

is a symplectomorphism.
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Hamiltonian Dynamics
Definition 96: A Hamiltonian system is a tripel (M, ω,H)
where (M, ω) is a symplectic manifold, and H : M × R→ R is a
smooth function. If H : M → R i.e. independent on teh second
R-component, the system is called autonomous. H defines a
R-dependent vector field XH on M via

ωp(XH(p, t),Y ) = −dp,tH(Y )

for all p ∈ M and Y ∈ TpM, which is called Hamiltonian vector
field, or with Ht = H(., t) : M → R in short

ω(XHt , .) = −dHt .

The state of the system is a point x ∈ M, its dynamics are the
flow-lines γ : I → M of XH :

γ̇ = XH(γ(t), t)

H is sometimes called Hamiltonian function – although it is still
just an ordinary function.
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Conservative Newtonian Mechanics
The sign on the right hand side varies between different authors.
Our choice will be justified by the following example.

Let U : Ω× R ⊂ R3 → R be the potential of a force field, i.e. the
force acting on a point mass with mass m is given by

F = −∇U.

where derivatives are taken in space direction only. The point mass
will move along curves x : I → R3 which satisfy Newton’s
equations of motion:

mẍ(t) = F (x(t), t) = −∇U(x(t), t)

Consider (T ∗R3, dθ,H) with H : T ∗R3 × R→ R given by

H(p, q) := 1
2m‖p‖

2 + U(q).

The first summand is the kinetic energy the second the potential
energy, H the total energy of the system.
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Conservative Newtonian Mechanics

We compute

dH = 1
m
∑

k
pkdpk +

∑
k

∂U
∂qk

dqk

and therefore

XH(p, q, t) = 1
m
∑

k
pk ∂

∂qk
−
∑

k

∂U
∂qk

∂

∂pk
.

With γ(t) = (p(t), q(t)) we find

q̇k(t) = 1
mpk(t) ṗk(t) = − ∂U

∂qk

and with q(t) = x(t), p(t) = mẋ(t) we obtain Newton’s equation
again.
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Conservation Laws

Proposition 97: (1) Conservation of energy: In an
autonomous Hamiltonian system (M, ω,H) flow lines lie
completely in level sets of H.

(2) Conservation of the symplectic structure: Consider a
general Hamiltonian system (M, ω,H). Let
Φ : U × (t0 − ε, t0 + ε)→ M be a smooth map for an open subset
U ⊂ M satisfying Φ(t0, x) = x for all x ∈ U and

∂Φ
∂t (x , t) = XH(Φ(x , t), t)

also called the flow of XH . We abbreviate Φt(X ) := Φ(x , t). Then
Φt : U → M is an embedding and

Φ∗
tω = ω.
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completely in level sets of H.
(2) Conservation of the symplectic structure: Consider a
general Hamiltonian system (M, ω,H). Let
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Conservation Laws
(3) Transformation under symplectomorphisms: Let
ϕ : (M1, ω1)→ (M2, ω2) be a symplectomorphism. Let
H : M2 × R→ R be a smooth function on M2. Then for the
Hamiltonian vector fields of H and H ◦ ϕ

ϕ∗(XH◦ϕ) = XH .

Proof:
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Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V , ω) and a subspace U ⊂ V we
define

Annω(U) := {v ∈ V | ω(v , u) = 0 ∀u ∈ U}.
Definition 98: Let (M, ω) be a symplectic manifold, ι : N → M
an immersion of a manifold N. ι is called

isotropic, if for all p ∈ N ι∗(TpN) ⊂ Annωι(p)(ι∗(TpN))

coisotropic if for all p ∈ N ι∗(TpN) ⊃ Annωι(p)(ι∗(TpN))
Lagrangian if isotropic and coisotropic.

Notice: If ι is isotropic, then dim N ≤ 1
2 dim M, coisotropic, then

dim N ≥ 1
2 dim M. Hence, if ι is Lagrangian, then

dim N = 1
2 dim M.
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Isotropic, Coisotropic and Lagrangian Immersions
Examples: (1) If dim N = 0 or 1, then ι is isotropic. If
dim N = n − 1 or n, ι is coisotropic.

Hence, regular curves in
oriented surfaces are Lagrangian.
(2) Rn × {0}, {0} × Rn ⊂ R2n are Lagrangian submanifolds.
(3) The zero section and every fibre in T ∗M are Lagrangian
submanifolds. If α ∈ Ω1(Q) then its graph
Γα := {α(q) ∈ T ∗

q Q | q ∈ Q} ⊂ T ∗Q is Lagrangian if and only if
dα = 0.
(4) Let ϕ : (M1, ω1)→ (M2, ω2) be a symplectomorphism
(dim M1 = dim M2). Then the graph

Γϕ := {(x , ϕ(x)) | x ∈ M1} ⊂ M1 ×M2

is a Lagrangian submanifold where the symplectic structure on
M1 ×M2 is given by

ω := π∗
1ω1 − π∗

2ω1.
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