Differential Geometry II

Symplectic Manifolds

Klaus Mohnke

July 9, 2020

Bonnet's Theorem

Theorem 90: Assume that (M, g) is a complete connected Riemannian manifold for which the sectional curvature satisfies

$$
K \geq \frac{1}{R^{2}}
$$

Then the diameter of M is bounded by

$$
\operatorname{diam}(M, g) \leq \pi R
$$

In particular, M is compact and its fundamental group is finite.

Proof of Bonnet's Theorem

Consider a geodesic $\gamma:[0, L] \rightarrow M$. Let X be vector field along γ, $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X=0$. Define $Y(t):=\sin (\pi t / L) X$ Then

Proof of Bonnet's Theorem

Consider a geodesic $\gamma:[0, L] \rightarrow M$. Let X be vector field along γ, $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X=0$. Define $Y(t):=\sin (\pi t / L)$. Then

$$
\begin{aligned}
I(Y, Y) & =-\int_{0}^{L} g\left(Y, \nabla_{\dot{\gamma}}^{2} Y+R(Y, \dot{\gamma}) \dot{\gamma}\right) d t \\
& =\int_{0}^{L}(\sin (\pi / L))^{2}\left(\pi^{2} / L^{2}-g(R(X, \dot{\gamma}) \dot{\gamma}, X)\right) d t
\end{aligned}
$$

Proof of Bonnet's Theorem

Consider a geodesic $\gamma:[0, L] \rightarrow M$. Let X be vector field along γ, $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X=0$. Define $Y(t):=\sin (\pi t / L)$. Then
$\|x\|_{y}=1$

$$
\begin{aligned}
I(Y, Y) & =-\int_{0}^{L} g\left(Y, \nabla_{\dot{\gamma}}^{2} Y+R(Y, \dot{\gamma}) \dot{\gamma}\right) d t \\
& =\int_{0}^{L}(\sin (\pi / L))^{2}(\underbrace{\pi^{2} / L^{2}-g(R(X, \dot{\gamma}) \dot{\gamma}, X})) d t
\end{aligned}
$$

Let $L \geq \pi R$. Then $K \geq 1 / R^{2}$ implies hat $I(Y, Y) \leq 0$.

Proof of Bonnet's Theorem

Consider a geodesic $\gamma:[0, L] \rightarrow M$. Let X be vector field along γ, $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X=0$. Define $Y(t):=\sin (\pi t / L)$. Then

$$
\begin{aligned}
I(Y, Y) & =-\int_{0}^{L} g\left(Y, \nabla_{\dot{\gamma}}^{2} Y+R(Y, \dot{\gamma}) \dot{\gamma}\right) d t \\
& =\int_{0}^{L}(\sin (\pi / L))^{2}\left(\pi^{2} / L^{2}-g(R(X, \dot{\gamma}) \dot{\gamma}, X)\right) d t
\end{aligned}
$$

Let $L \geq \pi R$. Then $K \geq 1 / R^{2}$ implies hat $I(Y, Y) \leq 0$.
Assume γ has no conjugate points. Then the unique Jacobi field J with $\mathcal{Z}(0)=Y(0)=0$ and $Z(L)=Y(L)=0$ (i.e. $J \equiv 0$) would satisty

$$
0=I(J, J)<I(Y, Y) \leq 0
$$

giving a contradiction.

Proof of Bonnet's Theorem

Consider a geodesic $\gamma:[0, L] \rightarrow M$. Let X be vector field along γ, $X \perp \dot{\gamma}$ and $\nabla_{\dot{\gamma}} X=0$. Define $Y(t):=\sin (\pi t / L)$. Then

$$
\begin{aligned}
I(Y, Y) & =-\int_{0}^{L} g\left(Y, \nabla_{\dot{\gamma}}^{2} Y+R(Y, \dot{\gamma}) \dot{\gamma}\right) d t \\
& =\int_{0}^{L}(\sin (\pi / L))^{2}\left(\pi^{2} / L^{2}-g(R(X, \dot{\gamma}) \dot{\gamma}, X)\right) d t
\end{aligned}
$$

Let $L \geq \pi R$. Then $K \geq 1 / R^{2}$ implies hat $I(Y, Y) \leq 0$.
Assume γ has no conjugate points. Then the unique Jacobi field J with $Z(0)=Y(0)=0$ and $Z(L)=Y(L)=0$ (i.e. $J \equiv 0$) would satisfy

$$
0=I(J, J)<I(Y, Y) \leq 0
$$

giving a contradiction.
Hence γ has conjugate points and is not minimal. \square

Proof of Bonnet's Theorem

Symplectic Manifolds

Definition 92: Let M be a smooth manifold (without boundary, but not necessarily compact). A symplectic structure of symplectic form on M is a closed, non-degenerate 2 -form $\omega \in \Omega^{2}(M)$, i.e. $d \omega=0$ and for all $p \in M$

$$
\left.X \in T_{p} M \mapsto X\right\lrcorner \omega \in T_{p}^{*} M
$$

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:

Symplectic Manifolds
Definition 92: Let M be a smooth manifold (without boundary, but not necessarily compact). A symplectic structure of symplectic form on M is a closed, non-degenerate 2-form $\omega \in \Omega^{2}(M)$, ie. $d \omega=0$ and for all $p \in M$

$$
\left.X \in T_{p} M \mapsto X\right\lrcorner \omega \in T_{p}^{*} M
$$

(*)
is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows.
(1) The non-degeneracy implies that $\operatorname{dim} M=2 n$ is even.

$$
\begin{aligned}
& V_{0}=T_{P} M \ni v_{1} \neq 0 \% \omega_{p}\left(V_{0}, v_{7}\right)=0 \\
& (x) \Rightarrow \exists v_{2} \notin \operatorname{stan}\left(v_{1}\right): \omega\left(v_{1}, v_{2}\right)=1 \text {. }
\end{aligned}
$$

$\sin \operatorname{Ker} \omega\left(\omega_{1},\right)=\operatorname{dim} k \omega\left(v_{2},\right)=\operatorname{din} M-1$
\& $k_{\omega} \omega\left(v_{1,}\right) \neq k_{\omega} \omega\left(o_{2},\right) \Rightarrow \operatorname{din}\left(k \omega\left(v_{1},\right) \cap k\left(v_{1}, j\right) \Rightarrow\right.$ $=\operatorname{divi} M-2$
$\left(x_{1} \omega_{1}:=\omega\left(V_{1} x V_{1}\right.\right.$ in run- deg. $v_{\in} V_{1}: \omega\left(y V_{1}\right)=\omega\left(v_{1} t_{2}\right)=0$

Symplectic Manifolds

Definition 92: Let M be a smooth manifold (without boundary, but not necessarily compact). A symplectic structure of symplectic form on M is a closed, non-degenerate 2 -form $\omega \in \Omega^{2}(M)$, ie. $d \omega=0$ and for all $p \in M$

$$
\left.X \in T_{p} M \mapsto X\right\lrcorner \omega \in T_{p}^{*} M
$$

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:
(1) The non-degeneracy implies that $\operatorname{dim} M=2 n$ is even.
(2) It is equivalent to

$$
\omega^{n}=\omega \wedge \ldots \wedge \omega \neq 0
$$

is a volume form. In particular, M has to be oriented. in deal do d
$\omega . \operatorname{ta}$ B: $\omega=v_{1}^{*} \uparrow v_{2}^{*}+v_{3}^{*} 1 v_{4}^{*}+\ldots+v_{24-6}^{*} \wedge v_{26}^{*}$

Symplectic Manifolds

Definition 92: Let M be a smooth manifold (without boundary, but not necessarily compact). A symplectic structure of symplectic form on M is a closed, non-degenerate 2 -form $\omega \in \Omega^{2}(M)$, i.e. $d \omega=0$ and for all $p \in M$

$$
\left.X \in T_{p} M \mapsto X\right\lrcorner \omega \in T_{p}^{*} M
$$

is an isomorphism.
Lemma 93 : From the existence of a symplectic structure follows:
(1) The non-degeneracy implies that $\operatorname{dim} M=2 n$ is even.
(2) It is equivalent to

$$
\omega^{n}=\omega \wedge \ldots \wedge \omega \neq 0
$$

is a volume form. In particular, M has to be oriented.
(3) If M is a closed manifold, then

$$
b_{2}(M):=\operatorname{dim} H_{D R}^{2}(M) \geq 1
$$

Symplectic Manifolds
(3)

$$
\begin{gathered}
\omega^{3} \neq 0 \Rightarrow \int_{M} \omega^{4}>0 \\
d \omega=0 \quad \text { caim } \quad[\omega] \neq 0 \in H_{D R}^{2}(M)
\end{gathered}
$$

R9. Assunar $J^{\circ} \alpha \in \Omega^{\prime}\left(B_{5}\right)$ sot. $\alpha \alpha=\omega$, i.e. w hexad.

$$
\begin{aligned}
\text { Thm } 0<\int_{M} \omega^{4} & =\int_{M}(d x)_{1} \omega^{4-1}=\int_{M} d\left(\alpha 1 \omega^{4-x}\right) \quad d \omega=0 \\
& =\int_{\partial M=\varnothing} \alpha+w^{4-1}=0 \quad \text {. }
\end{aligned}
$$

Examples

(1) $\mathbb{R}^{2 n} \cong T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$: The standard symplectic structure is given by

$$
\omega_{s t}=\sum_{k=1}^{n} d x^{2 k-1} \wedge d x^{2 k}
$$

Examples

(1) $\mathbb{R}^{2 n} \cong T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$: The standard symplectic structure is given by

$$
\omega_{s t}=\sum_{k=1}^{n} d x^{2 k-1} \wedge d x^{2 k}
$$

With standard coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on \mathbb{R}^{n} and adapted coordinates $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$ where

$$
\left(p_{1}, \ldots, q_{n}\right) \mapsto \theta_{\left(p_{1}, \ldots, q_{n}\right)}:=\left(q_{1}, \ldots, q_{n}, \sum_{k=1}^{n} p^{k} d q^{k}\right)
$$

parametrizes $T^{*} \mathbb{R}^{n}$ so that with the projection $\pi: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\pi\left(\theta\left(p_{1}, \ldots, q_{n}\right)\right)=\left(q_{1}, \ldots, q_{n}\right)
$$

and for the cordinate vector fields

$$
\theta_{\left(p_{1}, \ldots, q_{n}\right)}\left(\frac{\partial}{\partial q_{k}}\right)=p^{k}\left(p_{1}, \ldots, q_{n}\right)=p_{k}
$$

Examples

The identification is given by
$\left(p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n}\right) \mapsto\left(x_{1}, x_{3}, \ldots, x_{2 n-1}, x_{2}, x_{4}, \ldots, x_{2 n}\right)$ and the symplectic form

$$
\omega_{s t}=\sum_{k=1}^{n} d p^{k} \wedge d q^{k}=d \theta
$$

θ is called the tautological form on $T^{*} \mathbb{R}^{n}$.

Examples

The identification is given by
$\left(p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n}\right) \mapsto\left(x_{1}, x_{3}, \ldots, x_{2 n-1}, x_{2}, x_{4}, \ldots, x_{2 n}\right)$ and the symplectic form

$$
\omega_{s t}=\sum_{k=1}^{n} d p^{k} \wedge d q^{k}=d \theta
$$

θ is called the tautological form on $T^{*} \mathbb{R}^{n}$. In complex coordinates $Z_{k}=X_{k}+\mathrm{i} Y_{k}$ and the identification

$$
\left(x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right) \mapsto\left(x_{1}+i x_{2}, \ldots, x_{2 n-1}+i x_{2 n}\right)
$$

the symplectic form can be described as

$$
\omega_{s t}=\frac{i}{2} \sum_{k=1}^{n} d Z^{k} \wedge d \overline{Z^{k}}
$$

Examples

The identification is given by
$\left(p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n}\right) \mapsto\left(x_{1}, x_{3}, \ldots, x_{2 n-1}, x_{2}, x_{4}, \ldots, x_{2 n}\right)$ and the symplectic form

$$
\omega_{s t}=\sum_{k=1}^{n} d p^{k} \wedge d q^{k}=d \theta
$$

θ is called the tautological form on $T^{*} \mathbb{R}^{n}$. In complex coordinates $Z_{k}=X_{k}+\mathrm{i} Y_{k}$ and the identification

$$
\left(x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right) \mapsto\left(x_{1}+\mathrm{i} x_{2}, \ldots, x_{2 n-1}+\mathrm{i} x_{2 n}\right)
$$

the symplectic form can be described as

$$
\omega_{s t}=\frac{i}{2} \sum_{k=1}^{n} d Z^{k} \wedge d \overline{Z^{k}}
$$

Notice

$$
\begin{gathered}
\quad \operatorname{Jrm} \\
\omega_{s t}= \\
Y_{\mathrm{g}}(\langle.,\rangle)
\end{gathered}
$$

for the standard Hermitian product on $\mathbb{C}^{n} \cong T_{z} \mathbb{C}^{n}$, i.e. the Kähler form.

Examples

(2) Let $A \in \Omega^{1}\left(S^{2 n+1} ; i \mathbb{R}\right)$ be the connection one form on the total space of the Hopf bundle $S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ where the connection is given by the horizontal spaces $T_{z}^{h} S^{2 n+1}$ which are the orthogonal complements to the orbits of the S^{1}-action

$$
\left(z_{1}, \ldots, z_{n+1}\right) \cdot g=\left(z_{1} g, \ldots, z_{n+1} g\right)
$$

The curvature $F_{A} \in \Omega^{2}\left(\mathbb{C} P^{n} ; i \mathbb{R}\right)$ defines the symplectic form

$$
\omega_{F S}:=-\mathrm{i} F_{A},
$$

called Fubini Study form.
(3) Let F be an oriented surface. Any area form on F defines a symplectic structure on F.

$$
i^{3} F=0 \quad \forall p \text { sine } \operatorname{din} F=2
$$

Cotangent Bundles

Let Q be a smooth n-dimensional manifold. The tautological one form $\theta \in \Omega^{1}\left(T^{*} Q\right)$ is defined via

$$
\theta_{\alpha}(X):=\alpha \cdot \alpha\left(d_{\alpha^{\pi}}(X)\right)
$$

Cotangent Bundles

Let Q be a smooth n-dimensional manifold. The tautological one form $\theta \in \Omega^{1}\left(T^{*} Q\right)$ is defined via

$$
\theta_{\alpha}(X):=\alpha(d(X)) . \quad \alpha\left(d_{\alpha} \pi(X)\right)
$$

Here $\pi: T^{*} M \rightarrow M$ is the (smooth) projection, $\alpha \in T_{p}^{*} M$ for some $p \in M$ and $X \in T_{\alpha}\left(T^{*} M\right)$. Then $d_{\alpha} \pi(X) \in T_{p} M$ and the expression on the right hand side makes sense.

Cotangent Bundles
Let Q be a smooth n-dimensional manifold. The tautological one form $\theta \in \Omega^{1}\left(T^{*} Q\right)$ is defined via

$$
\theta_{\alpha}(X):=\alpha\left(d_{\alpha}(X)\right)
$$

Here $\pi: T^{*} \rightarrow M$ is the (smooth) projection, $\alpha \in T_{p}^{*} M$ for some $p \in M$ and $X \in T_{\alpha}\left(T^{*} M\right)$. Then $d_{\alpha} \pi(X) \in T_{p} M$ and the expression on the right hand side makes sense.

Proposition 94: θ is smooth and $d \theta \in \Omega^{2}\left(T^{*} M\right)$ is a symplectic form on $T^{*} M$. Exucise. Fist: expen θ in adyahd coedibak around α w.id. coucivates of Q armand $\pi(\alpha)=P$.

Cotangent Bundles

Let Q be a smooth n-dimensional manifold. The tautological one form $\theta \in \Omega^{1}\left(T^{*} Q\right)$ is defined via

$$
\theta_{\alpha}(X):=\alpha\left(d_{\alpha}(X)\right)
$$

Here $\pi: T^{*} \rightarrow M$ is the (smooth) projection, $\alpha \in T_{p}^{*} M$ for some $p \in M$ and $X \in T_{\alpha}\left(T^{*} M\right)$. Then $d_{\alpha} \pi(X) \in T_{p} M$ and the expression on the right hand side makes sense.

Proposition 94: θ is smooth and $d \theta \in \Omega^{2}\left(T^{*} M\right)$ is a symplectic form on $T^{*} M$.

Proof:

Cotangent Bundles

Symplectomorphisms

Definition 95: A map $\varphi: M_{1} \rightarrow M_{2}$ between two symplectic manifolds $\left(M_{k}, \omega_{k}\right), k=1,2$ is called a symplectomorphism if $\varphi^{*} \omega_{2}=\omega_{1}$.

Symplectomorphisms

Definition 95: A map $\varphi: M_{1} \rightarrow M_{2}$ between two symplectic manifolds $\left(M_{k}, \omega_{k}\right), k=1,2$ is called a symplectomorphism if $\varphi^{*} \omega_{2}=\omega_{1}$.
Remark: Notice that it follows $\operatorname{dim} M_{1} \leq \operatorname{dim} M_{2}$. The typical situation is that they are equal and φ is a diffeomorphism or at least an embedding (in the case that M_{1} is not compact).

Symplectomorphisms

Definition 95: A map $\varphi: M_{1} \rightarrow M_{2}$ between two symplectic manifolds $\left(M_{k}, \omega_{k}\right), k=1,2$ is called a symplectomorphism if $\varphi^{*} \omega_{2}=\omega_{1}$.
Remark: Notice that it follows $\operatorname{dim} M_{1} \leq \operatorname{dim} M_{2}$. The typical situation is that they are equal and φ is a diffeomorphism or at least an embedding (in the case that M_{1} is not compact).
Examples: (1) Orientation-preserving euclidean isometries of $\mathbb{R}^{2 n}$ are symplectomorphisms

Symplectomorphisms

Definition 95: A map $\varphi: M_{1} \rightarrow M_{2}$ between two symplectic manifolds $\left(M_{k}, \omega_{k}\right), k=1,2$ is called a symplectomorphism if $\varphi^{*} \omega_{2}=\omega_{1}$.
Remark: Notice that it follows $\operatorname{dim} M_{1} \leq \operatorname{dim} M_{2}$. The typical situation is that they are equal and φ is a diffeomorphism or at least an embedding (in the case that M_{1} is not compact).
Examples: (1) Orientation-preserving euclidean isometries of $\mathbb{R}^{2 n}$ are symplectomorphisms
(2) Area-preserving diffeomorphism of oriented surfaces are symplectomorphisms. In particular, a liner map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a symplectomorphism if and only if $\operatorname{det} A=1$. log. $A \in S O(2)$

$$
\text { or } \quad A=\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)
$$

Symplectomorphisms

Definition 95: A map $\varphi: M_{1} \rightarrow M_{2}$ between two symplectic manifolds $\left(M_{k}, \omega_{k}\right), k=1,2$ is called a symplectomorphism if $\varphi^{*} \omega_{2}=\omega_{1}$.
Remark: Notice that it follows $\operatorname{dim} M_{1} \leq \operatorname{dim} M_{2}$. The typical situation is that they are equal and φ is a diffeomorphism or at least an embedding (in the case that M_{1} is not compact).
Examples: (1) Orientation-preserving euclidean isometries of $\mathbb{R}^{2 n}$ are symplectomorphisms
(2) Area-preserving diffeomorphism of oriented surfaces are symplectomorphisms. In particular, a linaer map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a symplectomorphism if and only if $\operatorname{det} A=1$.
(3) Let $g: M \rightarrow N$ be a diffeomorphism $(\operatorname{dim} M=\operatorname{dim} N)$. Then $\varphi: T^{*} N \rightarrow T^{*} M$ given by

$$
\oint: \quad \alpha \in T_{p}^{*} N \mapsto\left(d_{g^{-1}(p)} g\right)^{*} \alpha \in T_{g^{-1}(p)}^{*} M
$$

is a symplectomorphism.

Hamiltonian Dynamics

Definition 96: A Hamiltonian system is a tripe (M, ω, H) where (M, ω) is a symplectic manifold, and $H: M \times \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function. If $H: M \rightarrow \mathbb{R}$ i.e. independent on th second \mathbb{R}-component, the system is called autonomous. H defines a \mathbb{R}-dependent vector field X_{H} on M via

$$
\omega_{p}\left(X_{H}(p, t), Y\right)=-d_{p, t} H(Y)
$$

for all $p \in M$ and $Y \in T_{p} M$, which is called Hamiltonian vector field, or with $H_{t}=H(., t): M \rightarrow \mathbb{R}$ in short

Hamiltonian Dynamics

Definition 96: A Hamiltonian system is a tripel (M, ω, H) where (M, ω) is a symplectic manifold, and $H: M \times \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function. If $H: M \rightarrow \mathbb{R}$ i.e. independent on teh second \mathbb{R}-component, the system is called autonomous. H defines a \mathbb{R}-dependent vector field X_{H} on M via

$$
\omega_{p}\left(X_{H}(p, t), Y\right)=-d_{p, t} H(Y)
$$

for all $p \in M$ and $Y \in T_{p} M$, which is called Hamiltonian vector field, or with $H_{t}=H(., t): M \rightarrow \mathbb{R}$ in short

$$
\omega\left(X_{H_{t}}, .\right)=-d H_{t} .
$$

The state of the system is a point $x \in M$, its dynamics are the flow-lines $\gamma: I \rightarrow M$ of X_{H} :

$$
\dot{\gamma}=x_{H}(\gamma(t), t) \in \mathcal{T}_{\gamma(t)} M
$$

Hamiltonian Dynamics

Definition 96: A Hamiltonian system is a tripel (M, ω, H) where (M, ω) is a symplectic manifold, and $H: M \times \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function. If $H: M \rightarrow \mathbb{R}$ i.e. independent on teh second \mathbb{R}-component, the system is called autonomous. H defines a \mathbb{R}-dependent vector field X_{H} on M via

$$
\omega_{p}\left(X_{H}(p, t), Y\right)=-d_{p, t} H(Y)
$$

for all $p \in M$ and $Y \in T_{p} M$, which is called Hamiltonian vector field, or with $H_{t}=H(., t): M \rightarrow \mathbb{R}$ in short

$$
\omega\left(X_{H_{t}}, .\right)=-d H_{t} .
$$

The state of the system is a point $x \in M$, its dynamics are the flow-lines $\gamma: I \rightarrow M$ of X_{H} :

$$
\dot{\gamma}=X_{H}(\gamma(t), t)
$$

H is sometimes called Hamiltonian function - although it is still just an ordinary function.

Conservative Newtonian Mechanics

The sign on the right hand side varies between different authors. Our choice will be justified by the following example.

Conservative Newtonian Mechanics

The sign on the right hand side varies between different authors.
Our choice will be justified by the following example.
Let $U: \Omega \times \mathbb{R} \subset \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the potential of a force field, i.e. the force acting on a point mass with mass m is given by

$$
F=-\nabla U .
$$

where derivatives are taken in space direction only. The point mass will move along curves $x: I \rightarrow \mathbb{R}^{3}$ which satisfy Newton's equations of motion:
$\left(\frac{d}{d f}(m \dot{x}) \quad \sim\right) m \ddot{x}(t)=F(x(t), t)=-\nabla U(x(t), t)$
Consider $\left(T^{*} \mathbb{R}^{3}, d \theta, H\right)$ with $H: T^{*} \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
H(p, q):=\frac{1}{2 m}\|p\|^{2}+U(q \not \subset) \quad \% \quad p^{\wedge} m \cdot \dot{X}
$$

Conservative Newtonian Mechanics

The sign on the right hand side varies between different authors.
Our choice will be justified by the following example.
Let $U: \Omega \times \mathbb{R} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the potential of a force field, i.e. the force acting on a point mass with mass m is given by

$$
F=-\nabla U .
$$

where derivatives are taken in space direction only. The point mass will move along curves $x: I \rightarrow \mathbb{R}^{3}$ which satisfy Newton's equations of motion:

$$
m \ddot{x}(t)=F(x(t), t)=-\nabla U(x(t), t)
$$

Consider $\left(T^{*} \mathbb{R}^{3}, d \theta, H\right)$ with $H: T^{*} \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
H(p, q):=\frac{1}{2 m}\|p\|^{2}+U(q)
$$

The first summand is the kinetic energy the second the potential energy, H the total energy of the system.

Conservative Newtonian Mechanics

We compute

$$
\begin{aligned}
& d^{\mathrm{T}_{\mathrm{R}}^{3}} H \\
& d H=\frac{1}{m} \sum_{k} p^{k} d p^{k}+\sum_{k} \frac{\partial U}{\partial q_{k}} d q^{k}
\end{aligned}
$$

Conservative Newtonian Mechanics

We compute

$$
d H=\frac{1}{m} \sum_{k} p^{k} d p^{k}+\sum_{k} \frac{\partial U}{\partial q_{k}} d q^{k}
$$

and therefore

$$
X_{H}(p, q, t)=\frac{1}{m} \sum_{k} p^{k} \frac{\partial}{\partial q_{k}}-\sum_{k} \frac{\partial U}{\partial q_{k}} \frac{\partial}{\partial p_{k}} .
$$

Conservative Newtonian Mechanics

We compute

$$
d H=\frac{1}{m} \sum_{k} p^{k} d p^{k}+\sum_{k} \frac{\partial U}{\partial q_{k}} d q^{k}
$$

and therefore

$$
X_{H}(p, q, t)=\frac{1}{m} \sum_{k} p^{k} \frac{\partial}{\partial q_{k}}-\sum_{k} \frac{\partial U}{\partial q_{k}} \frac{\partial}{\partial p_{k}} .
$$

With $\gamma(t)=(p(t), q(t))$ we find

$$
\dot{q}_{k}(t)=\frac{1}{m} p_{k}(t) \quad \dot{p}_{k}(t)=-\frac{\partial U}{\partial q_{k}}
$$

Conservative Newtonian Mechanics

We compute

$$
d H=\frac{1}{m} \sum_{k} p^{k} d p^{k}+\sum_{k} \frac{\partial U}{\partial q_{k}} d q^{k}
$$

and therefore

$$
X_{H}(p, q, t)=\frac{1}{m} \sum_{k} p^{k} \frac{\partial}{\partial q_{k}}-\sum_{k} \frac{\partial U}{\partial q_{k}} \frac{\partial}{\partial p_{k}}
$$

With $\gamma(t)=(p(t), q(t))$ we find

$$
\dot{q}_{k}(t)=\frac{1}{m} p_{k}(t) \quad \dot{p}_{k}(t)=-\frac{\partial U}{\partial q_{k}}
$$

and with $q(t)=x(t), p(t)=m \dot{x}(t)$ we obtain Newton's equation again.

Conservation Laws

Proposition 97: (1) Conservation of energy: In an autonomous Hamiltonian system (M, ω, H) flow lines lie completely in level sets of H.

Conservation Laws

Proposition 97: (1) Conservation of energy: In an autonomous Hamiltonian system (M, ω, H) flow lines lie completely in level sets of H.
(2) Conservation of the symplectic structure: Consider a general Hamiltonian system (M, ω, H). Let $\Phi: U \times\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \rightarrow M$ be a smooth map for an open subset $U \subset M$ satisfying $\Phi\left(t_{0}, x\right)=x$ for all $x \in U$ and

$$
\frac{\partial \Phi}{\partial t}(x, t)=X_{H}(\Phi(x, t), t)
$$

also called the flow of X_{H}. We abbreviate $\Phi_{t}(X):=\Phi(x, t)$. Then $\Phi_{t}: U \rightarrow M$ is an embedding and

$$
\Phi_{t}^{*} \omega=\omega
$$

Conservation Laws

(3) Transformation under symplectomorphisms: Let
$\varphi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ be a symplectomorphism. Let
$H: M_{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function on M_{2}. Then for the Hamiltonian vector fields of H and $H \circ \varphi$

$$
\varphi_{*}\left(X_{H \circ \varphi}\right)=X_{H}
$$

Conservation Laws

(3) Transformation under symplectomorphisms: Let
$\varphi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ be a symplectomorphism. Let
$H: M_{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function on M_{2}. Then for the Hamiltonian vector fields of H and $H \circ \varphi$

$$
\varphi_{*}\left(X_{H \circ \varphi}\right)=X_{H} .
$$

Proof:

Conservation Laws

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$ coisotropic if for all $p \in N \iota_{*}\left(T_{p} N\right) \supset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$ coisotropic if for all $p \in N \iota_{*}\left(T_{p} N\right) \supset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$ Lagrangian if isotropic and coisotropic.

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$
coisotropic if for all $p \in N \iota_{*}\left(T_{p} N\right) \supset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$
Lagrangian if isotropic and coisotropic.
Notice: If ι is isotropic, then $\operatorname{dim} N \leq \frac{1}{2} \operatorname{dim} M$, coisotropic, then $\operatorname{dim} N \geq \frac{1}{2} \operatorname{dim} M$. Hence, if ι is Lagrangian, then $\operatorname{dim} N=\frac{1}{2} \operatorname{dim} M$.

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic.

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.
(2) $\mathbb{R}^{n} \times\{0\},\{0\} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ are Lagrangian submanifolds.

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.
(2) $\mathbb{R}^{n} \times\{0\},\{0\} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ are Lagrangian submanifolds.
(3) The zero section and every fibre in $T^{*} M$ are Lagrangian submanifolds. If $\alpha \in \Omega^{1}(Q)$ then its graph
$\Gamma_{\alpha}:=\left\{\alpha(q) \in T_{q}^{*} Q \mid q \in Q\right\} \subset T^{*} Q$ is Lagrangian if and only if $d \alpha=0$.

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.
(2) $\mathbb{R}^{n} \times\{0\},\{0\} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ are Lagrangian submanifolds.
(3) The zero section and every fibre in $T^{*} M$ are Lagrangian submanifolds. If $\alpha \in \Omega^{1}(Q)$ then its graph
$\Gamma_{\alpha}:=\left\{\alpha(q) \in T_{q}^{*} Q \mid q \in Q\right\} \subset T^{*} Q$ is Lagrangian if and only if $d \alpha=0$.
(4) Let $\varphi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ be a symplectomorphism $\left(\operatorname{dim} M_{1}=\operatorname{dim} M_{2}\right)$. Then the graph

$$
\Gamma_{\varphi}:=\left\{(x, \varphi(x)) \mid x \in M_{1}\right\} \subset M_{1} \times M_{2}
$$

is a Lagrangian submanifold where the symplectic structure on $M_{1} \times M_{2}$ is given by

$$
\omega:=\pi_{1}^{*} \omega_{1}-\pi_{2}^{*} \omega_{1}
$$

