Differential Geometry II
 Darboux Theorem and Moser Trick

Klaus Mohnke

July 14, 2020

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\}
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$ coisotropic if for all $p \in N \iota_{*}\left(T_{p} N\right) \supset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$

$$
\begin{aligned}
& \text { tor all } p \in \mathbb{N} \iota_{*}\left(I_{p} N V\right) A n n_{\omega_{l(p)}}\left(\iota_{*}\left(I_{p} N\right)\right) \\
& \text { i.e. } v \in T_{c(p)} M \quad\left(T_{p} N\right) \\
& \Rightarrow V \in 2_{*}\left(T_{p} N\right) .
\end{aligned}
$$

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$ coisotropic if for all $p \in N \iota_{*}\left(T_{p} N\right) \supset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$ Lagrangian if isotropic and coisotropic.

Isotropic, Coisotropic and Lagrangian Immersions

For a symplectic vector space (V, ω) and a subspace $U \subset V$ we define

$$
\operatorname{Ann}_{\omega}(U):=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in U\} .
$$

Definition 98: Let (M, ω) be a symplectic manifold, $\iota: N \rightarrow M$ an immersion of a manifold $N . \iota$ is called isotropic, if for all $p \in N \iota_{*}\left(T_{p} N\right) \subset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$
coisotropic if for all $p \in N \iota_{*}\left(T_{p} N\right) \supset \operatorname{Ann}_{\omega_{\iota(p)}}\left(\iota_{*}\left(T_{p} N\right)\right)$
Lagrangian if isotropic and coisotropic.
Notice: If ι is isotropic, then $\operatorname{dim} N \leq \frac{1}{2} \operatorname{dim} M$, coisotropic, then $\operatorname{dim} N \geq \frac{1}{2} \operatorname{dim} M$. Hence, if ι is Lagrangian, then $\operatorname{dim} N=\frac{1}{2} \operatorname{dim} M$.

Isotropic, Coisotropic and Lagrangian Immersions
Examples: (1) If $\operatorname{dim} N=0$ or $\underline{1}$, then ι is isotropic. If $\operatorname{dim} N=2 n-1$ or $2 n, \iota$ is coisotropic. $\quad \omega(v, \varphi)=0 \quad \forall V$ $\operatorname{dim} M=2 h$

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.
(2) $\mathbb{R}^{n} \times\{0\},\{0\} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ are Lagrangian submanifolds.
$\mathbb{R}^{4} \times R^{h}$

Isotropic, Coisotropic and Lagrangian Immersions
Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.
(2) $\mathbb{R}^{n} \times\{0\},\{0\} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ are Lagrangian submanifolds.
(3) The zero section and every fibre in $T^{*} M$ are Lagrangian submanifolds. If $\alpha \in \Omega^{1}(Q)$ then its graph
$\rightarrow \Gamma_{\alpha}:=\left\{\alpha(q) \in T_{q}^{*} Q \mid q \in Q\right\} \subset T^{*} Q$ is Lagrangian if and only if $d \alpha=0$.

$$
\begin{aligned}
& \left.\omega=d \theta=\sum d p_{i} d q_{i} \quad i_{1} \text { associated coand. (} p_{1} \ldots, p_{4}, q_{1} \ldots, g_{1}\right) \\
& \theta=\left.\sum p_{i} d_{q i} \quad \theta\right|_{\text {zug section }} \equiv 0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha: Q \rightarrow T^{x} Q \quad \alpha^{x} \theta=\alpha \Rightarrow \alpha^{x}(d \theta)=d \alpha
\end{aligned}
$$

Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If $\operatorname{dim} N=0$ or 1 , then ι is isotropic. If $\operatorname{dim} N=n-1$ or n, ι is coisotropic. Hence, regular curves in oriented surfaces are Lagrangian.
(2) $\mathbb{R}^{n} \times\{0\},\{0\} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$ are Lagrangian submanifolds.
(3) The zero section and every fibre in $T^{*} M$ are Lagrangian submanifolds. If $\alpha \in \Omega^{1}(Q)$ then its graph
$\Gamma_{\alpha}:=\left\{\alpha(q) \in T_{q}^{*} Q \mid q \in Q\right\} \subset T^{*} Q$ is Lagrangian if and only if $d \alpha=0$.
(4) Let $\varphi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ be a symplectomorphism $\left(\operatorname{dim} M_{1}=\operatorname{dim} M_{2}\right)$. Then the graph

$$
\Gamma_{\varphi}:=\left\{(x, \varphi(x)) \mid x \in M_{1}\right\} \subset M_{1} \times M_{2}
$$

is a Lagrangian submanifold where the symplectic structure on $M_{1} \times M_{2}$ is given by

$$
\omega:=\pi_{1}^{*} \omega_{1}-\pi_{2}^{*} \omega_{1} . \quad\left({ }^{*} \varepsilon \omega_{1} \oplus\left(-\omega_{2}\right)^{\prime \prime}\right)
$$

$$
\text { At (4) } \begin{aligned}
& \Phi: \mu_{1} \rightarrow \Gamma_{y} \quad \Phi(x)=(x, \varphi(x)) \\
& \Phi^{*} \omega=(i d \times \rho)^{*}\left(i_{1}^{x} \omega_{1}-i_{2}^{*} \omega_{2}\right) \\
&=\omega_{1}-\varphi^{*} \omega_{2}=0
\end{aligned}
$$

Darboux' Theorem

Theorem 99: Let (M, ω) be a symplectic manifold, $\operatorname{dim} M=2 n$, $p \in M$. There exists a neighborhood U of $p, R>0$ and a symplectomorphisms

$$
\varphi:(U, \omega) \rightarrow\left(B^{2 n}(R), \omega_{s t}\right)
$$

i.e. φ is a diffeomorphism such that $\varphi^{*} \omega_{s t}=\omega$.

Darboux' Theorem

Theorem 99: Let (M, ω) be a symplectic manifold, $\operatorname{dim} M=2 n$, $p \in M$. there exists a neighborhood U of $p, R>0$ and a symplectomorphisms

$$
\varphi:(U, \omega) \rightarrow\left(B^{2 n}(R), \omega_{s t}\right)
$$

i.e. φ is a diffeomorphism such that $\varphi^{*} \omega_{s t}=\omega$.

Remark: (1) This is in sharp contrast to Riemannian manifolds: a diffeomeorphism of a neighborhood to an open subset of \mathbb{R}^{n} would be an isometry and implies, that the Riemannian curvature tensor vanishes identically.

Darboux' Theorem

Theorem 99: Let (M, ω) be a symplectic manifold, $\operatorname{dim} M=2 n$, $p \in M$. there exists a neighborhood U of $p, R>0$ and a symplectomorphisms

$$
\varphi:(U, \omega) \rightarrow\left(B^{2 n}(R), \omega_{s t}\right)
$$

i.e. φ is a diffeomorphism such that $\varphi^{*} \omega_{s t}=\omega$.

Remark: (1) This is in sharp contrast to Riemannian manifolds: a diffeomeorphism of a neighborhood to an open subset of \mathbb{R}^{n} would be an isometry and implies, that the Riemannian curvature tensor vanishes identically. In particular, the Theorem means that there are no meaningful local invariants in symplectic geometry.

Darboux' Theorem

Theorem 99: Let (M, ω) be a symplectic manifold, $\operatorname{dim} M=2 n$, $p \in M$. there exists a neighborhood U of $p, R>0$ and a symplectomorphisms

$$
\varphi:(U, \omega) \rightarrow\left(B^{2 n}(R), \omega_{s t}\right)
$$

i.e. φ is a diffeomorphism such that $\varphi^{*} \omega_{s t}=\omega$.

Remark: (1) This is in sharp contrast to Riemannian manifolds: a diffeomeorphism of a neighborhood to an open subset of \mathbb{R}^{n} would be an isometry and implies, that the Riemannian curvature tensor vanishes identically. In particular, the Theorem means that there are no meaningful local invariants in symplectic geometry.
(2) The quantity

$$
w(M, \omega):=\sup \left\{R>0 \mid \exists \psi: B^{2 n}(R) \hookrightarrow M, \psi^{*} \omega=\omega_{s t}\right\}
$$

is a symplectic invariant, called Gromov width. E.g.

$$
w\left(B^{2}(R) \times \mathbb{R}^{2 n-2}\right)=R .
$$

Moser's Trick

Lemma 100: Let (M, ω) be a symplectic manifold.
(1) For a smooth family $\left(\omega_{\tau}\right)_{\tau \in[0,1]}$ of symplectic structures with $\omega_{0}=\omega$ suppose there is a smooth family $\beta_{\tau} \in \Omega^{1}(M)$ such that

$$
\begin{array}{ll}
d \beta_{\tau}=\frac{d}{d \tau} \omega_{\tau} . & \% \nexists \beta_{\tau} \text { if } \\
& \% \omega_{\tau}=e^{\tau} \omega \\
& \% \& \beta \text { 公 dond. }
\end{array}
$$

Moser's Trick

Lemma 100: Let (M, ω) be a symplectic manifold.
(1) For a smooth family $\left(\omega_{\tau}\right)_{\tau \in[0,1]}$ of symplectic structures with $\omega_{0}=\omega$ suppose there is a smooth family $\beta_{\tau} \in \Omega^{1}(M)$ such that

$$
d \beta_{\tau}=\frac{d}{d \tau} \omega_{\tau}
$$

(2) Assume there is a family $\Phi_{\tau}: U \rightarrow M$ of diffeomorphisms onto their image such that $\Phi_{0}=\mathrm{id}_{U}$, and ist order ODE

$$
\frac{d}{d \tau} \Phi_{\tau}=X_{\tau} \circ \Phi_{\tau} \quad<\text { site im-tial values }
$$

for the family of vector fields defined by

$$
\omega_{\tau}\left(X_{\tau}, .\right)=-\beta_{\tau} . \quad \longleftrightarrow T_{p} M \longrightarrow T_{p}^{r} M
$$

Moser's Trick

Lemma 100: Let (M, ω) be a symplectic manifold.
(1) For a smooth family $\left(\omega_{\tau}\right)_{\tau \in[0,1]}$ of symplectic structures with $\omega_{0}=\omega$ suppose there is a smooth family $\beta_{\tau} \in \Omega^{1}(M)$ such that

$$
d \beta_{\tau}=\frac{d}{d \tau} \omega_{\tau}
$$

(2) Assume there is a family $\Phi_{\tau}: U \rightarrow M$ of diffeomorphisms onto their image such that $\Phi_{0}=\mathrm{id}_{U}$, and
$u \subset M$

$$
\frac{d}{d \tau} \Phi_{\tau}=X_{\tau} \circ \Phi_{\tau}
$$

for the family of vector fields defined by

$$
\boldsymbol{X}_{\boldsymbol{\tau} \boldsymbol{d}} \boldsymbol{\omega}=\omega_{\tau}\left(X_{\tau}, .\right)=-\beta_{\tau} .
$$

Then

$$
\Phi_{\tau}^{*} \omega_{\tau}=\omega . \Rightarrow \Phi_{1}^{*} \omega_{1}=\omega_{0}=\omega
$$

Moser's Trick

Proof: (i) Obviously $\Phi_{0}^{*} \omega_{0}=\omega_{0}=\omega$.

Moser's Trick

Proof: (i) Obviously $\Phi_{0}^{*} \omega_{0}=\omega_{0}=\omega$.

(ii) Differentiating the left hand side of the equation yields

$$
\begin{aligned}
& \frac{d}{d \tau}\left(\Phi_{\tau}^{*} \omega_{\tau}\right)=\Phi_{\tau}^{*}\left(\mathcal{L}_{X_{\tau}} \omega_{\tau}+\frac{d \omega_{\tau}}{d \tau}\right) \quad \omega_{\tau} \text { sympectic } \\
&\left.\left.=\Phi_{\tau}^{*}\left(X_{\tau}\right\lrcorner d \omega_{\tau}+d\left(X_{\tau}\right\lrcorner \omega_{\tau}\right)+d \beta_{\tau}\right) \Rightarrow d \omega_{\tau}=\mathbf{0} \\
&=\Phi_{\tau}^{*}\left(d\left(-\beta_{\tau}\right)+d \beta_{\tau}\right)=0 . \\
& \text { Coftun }
\end{aligned}
$$

The claim follows. \square
Remark: The job consists in establishing the two conditions. To obtain β_{τ} one uses the idea of Poincaré'e Lemma or assumes that $\left[\omega_{\tau}\right] \in H_{D R}^{2}(M)$ is constant and tools from analysis.

Moser's Trick

Proof: (i) Obviously $\Phi_{0}^{*} \omega_{0}=\omega_{0}=\omega$.

(ii) Differentiating the left hand side of the equation yields

$$
\begin{aligned}
\frac{d}{d \tau}\left(\Phi_{\tau}^{*} \omega_{\tau}\right) & =\Phi_{\tau}^{*}\left(\mathcal{L}_{X_{\tau}} \omega_{\tau}+\frac{d \omega_{\tau}}{d \tau}\right) \\
& \left.\left.=\Phi_{\tau}^{*}\left(X_{\tau}\right\lrcorner d \omega_{\tau}+d\left(X_{\tau}\right\lrcorner \omega_{\tau}\right)+d \beta_{\tau}\right) \\
& =\Phi_{\tau}^{*}\left(d\left(-\beta_{\tau}\right)+d \beta_{\tau}\right)=0 .
\end{aligned}
$$

The claim follows. \square
Remark: The job consists in establishing the two conditions. To obtain β_{τ} one uses the idea of Poincaré'e Lemma or assumes that $\left[\omega_{\tau}\right] \in H_{D R}^{2}(M)$ is constant and tools from analysis.

However, β_{τ} is not unique (e.g. replacing β_{τ} by $\beta_{\tau}+d f_{\tau}$) and the second condition can be very sensitive to the choice.

Moser's Trick

Proof: (i) Obviously $\Phi_{0}^{*} \omega_{0}=\omega_{0}=\omega$.

(ii) Differentiating the left hand side of the equation yields

$$
\begin{aligned}
\frac{d}{d \tau}\left(\Phi_{\tau}^{*} \omega_{\tau}\right) & =\Phi_{\tau}^{*}\left(\mathcal{L}_{X_{\tau}} \omega_{\tau}+\frac{d \omega_{\tau}}{d \tau}\right) \\
& \left.\left.=\Phi_{\tau}^{*}\left(X_{\tau}\right\lrcorner d \omega_{\tau}+d\left(X_{\tau}\right\lrcorner \omega_{\tau}\right)+d \beta_{\tau}\right) \\
& =\Phi_{\tau}^{*}\left(d\left(-\beta_{\tau}\right)+d \beta_{\tau}\right)=0 .
\end{aligned}
$$

The claim follows. \square
Remark: The job consists in establishing the two conditions. To obtain β_{τ} one uses the idea of Poincaré'e Lemma or assumes that $\left[\omega_{\tau}\right] \in H_{D R}^{2}(M)$ is constant and tools from analysis.

However, β_{τ} is not unique (e.g. replacing β_{τ} by $\beta_{\tau}+d f_{\tau}$) and the second condition can be very sensitive to the choice.

Read the proof of Darboux' Theorem in this light!!

Darboux Charts historically diftent proof is see fruol'd
"nathatical Mulhods...
Proof of Theorem 99: W.I.o.g. $M=U \subset \mathbb{R}^{2 n}, p=0$.

Darboux Charts

Proof of Theorem 99: W.I.o.g. $M=U \subset \mathbb{R}^{2 n}, p=0$.
(i) Let $\left(v_{1}, \ldots, v_{2 n}\right) \subset \mathbb{R}^{2 n}$ basis such that
$\omega_{0}\left(v_{2 k-1}, v_{2 k}\right)=-\omega_{0}\left(v_{2 k}, v_{2 k-1}\right)=1$ and $\omega_{0}\left(v_{i}, v_{j}\right)=0$ else.

Darboux Charts

Proof of Theorem 99: W.I.o.g. $M=U \subset \mathbb{R}^{2 n}, p=0$.
(i) Let $\left(v_{1}, \ldots, v_{2 n}\right) \subset \mathbb{R}^{2 n}$ basis such that $\omega_{0}\left(v_{2 k-1}, v_{2 k}\right)=-\omega_{0}\left(v_{2 k}, v_{2 k-1}\right)=1$ and $\omega_{0}\left(v_{i}, v_{j}\right)=0$ else. Let $T \in G I(2 k ; \mathbb{R})$ such that $T\left(e_{j}\right)=v_{j}$. Then $T: \mathcal{T}^{-}(U) \rightarrow \mathbb{X}(U)$ is a diffeomorphism with $\left(T^{*} \omega\right)_{0}=\omega_{\text {st }}$.

Darboux Charts

Proof of Theorem 99: W.I.o.g. $M=U \subset \mathbb{R}^{2 n}, p=0$.
(i) Let $\left(v_{1}, \ldots, v_{2 n}\right) \subset \mathbb{R}^{2 n}$ basis such that $\omega_{0}\left(v_{2 k-1}, v_{2 k}\right)=-\omega_{0}\left(v_{2 k}, v_{2 k-1}\right)=1$ and $\omega_{0}\left(v_{i}, v_{j}\right)=0$ else.
Let $T \in G I(2 k ; \mathbb{R})$ such that $T\left(e_{j}\right)=v_{j}$. Then $T: U \rightarrow T(U)$ is a diffeomorphism with $\left(T^{*} \omega\right)_{\boldsymbol{p}}=\omega_{\text {st }}$.
\Rightarrow We may assume that $\omega_{\boldsymbol{p}}=\omega_{\text {st }}$.

Darboux Charts

Proof of Theorem 99: W.I.o.g. $M=U \subset \mathbb{R}^{2 n}, p=0$.
(i) Let $\left(v_{1}, \ldots, v_{2 n}\right) \subset \mathbb{R}^{2 n}$ basis such that $\omega_{0}\left(v_{2 k-1}, v_{2 k}\right)=-\omega_{0}\left(v_{2 k}, v_{2 k-1}\right)=1$ and $\omega_{0}\left(v_{i}, v_{j}\right)=0$ else.
Let $T \in G I(2 k ; \mathbb{R})$ such that $T\left(e_{j}\right)=v_{j}$. Then $T: U \rightarrow T(U)$ is a diffeomorphism with $\left(T^{*} \omega\right)_{0}=\omega_{s t}$.
\Rightarrow We may assume that $\omega_{0}=\omega_{s t}$.
(ii) Let $\omega_{\tau}:=(1-\tau) \omega+\tau \omega_{s t}$. We have $\omega_{\tau, 0}=\omega_{s t}$ for all $\tau . \Rightarrow$ There exists an open neighbourhood $U^{\prime} \subset U$ of p such that

$$
\left.\omega_{\tau}\right|_{U^{\prime}}
$$

is non-degenerate for all $\tau \in[0,1]$.

Darboux Charts

(iii) ${ }^{1} U^{\prime \prime} \subset U^{\prime}$ and $\beta \in \Omega^{1}\left(U^{\prime \prime}\right)$ such that $\beta_{0}=0$ and $d \beta=\omega$.

Define

$$
\beta_{\tau}:=(1-\tau) \beta+\tau \theta
$$

where $\theta:=\sum_{k=1}^{n} x^{2 k-1} d x^{2 k}$ is the tautological form. $\beta_{\tau, 0}=0$ for all τ. Then $d \beta_{\tau}=\omega_{\tau}$.

$$
\begin{aligned}
d \beta_{T}(& =(1-T) \alpha \beta+T d \theta \\
& =(1-\tau) \omega+T \omega s t=\omega T
\end{aligned}
$$

Darboux Charts

(iii) $U^{\prime \prime} \subset U^{\prime}$ and $\beta \in \Omega^{1}\left(U^{\prime \prime}\right)$ such that $\beta_{0}=0$ and $d \beta=\omega$.

Define

$$
\beta_{\tau}:=(1-\tau) \beta+\tau \theta
$$

where $\theta:=\sum_{k=1}^{n} x^{2 k-1} d x^{2 k}$ is the tautological form. $\beta_{\tau, 0}=0$ for all τ. Then $d \beta_{\tau}=\omega_{\tau}$.
(iv) Let X_{τ} be the vector field on $U^{\prime \prime}$ such that

$$
X \tau\lrcorner \omega_{\tau}=-\beta_{\tau}
$$

$X_{\tau}(0)=0$ for all $\tau \in[0,1]$. since $\beta_{\tau_{0}} \simeq 0$.

Darboux Charts

(iii) $U^{\prime \prime} \subset U^{\prime}$ and $\beta \in \Omega^{1}\left(U^{\prime \prime}\right)$ such that $\beta_{0}=0$ and $d \beta=\omega$.

Define

$$
\beta_{\tau}:=(1-\tau) \beta+\tau \theta
$$

where $\theta:=\sum_{k=1}^{n} x^{2 k-1} d x^{2 k}$ is the tautological form. $\beta_{\tau, 0}=0$ for all τ. Then $d \beta_{\tau}=\omega_{\tau}$.
(iv) Let X_{τ} be the vector field on $U^{\prime \prime}$ such that

$$
X \tau\lrcorner \omega_{\tau}=-\beta_{\tau} .
$$

$X_{\tau}(0)=0$ for all $\tau \in[0,1]$.
\Rightarrow there is a neighbourhood $V \subset U^{\prime \prime}$ of p such that for all $q \in V$ there exists a unique solution $\gamma_{q}:[0, \mathcal{1}] \rightarrow U^{\prime \prime}$ of

$$
\dot{\gamma}_{q}(t)=X_{t}\left(\gamma_{q}(t)\right) \longleftarrow
$$

with $\gamma_{q}(0)=q$. Notice $\gamma_{q} \equiv p$ is a globe solution

Darboux Charts

(iii) $U^{\prime \prime} \subset U^{\prime}$ and $\beta \in \Omega^{1}\left(U^{\prime \prime}\right)$ such that $\beta_{0}=0$ and $d \beta=\omega$.

Define

$$
\beta_{\tau}:=(1-\tau) \beta+\tau \theta
$$

where $\theta:=\sum_{k=1}^{n} x^{2 k-1} d x^{2 k}$ is the tautological form. $\beta_{\tau, 0}=0$ for all τ. Then $d \beta_{\tau}=\omega_{\tau}$.
(iv) Let X_{τ} be the vector field on $U^{\prime \prime}$ such that

$$
X \tau\lrcorner \omega_{\tau}=-\beta_{\tau} .
$$

$X_{\tau}(0)=0$ for all $\tau \in[0,1]$.
\Rightarrow there is a neighbourhood $V \subset U^{\prime \prime}$ of p such that for all $q \in V$ there exists a unique solution $\gamma_{q}:[0, \tau] \rightarrow U^{\prime \prime}$ of

$$
\dot{\gamma}_{q}(t)=X_{t}(\gamma(t))
$$

with $\gamma_{q}(0)=q$.
(v) Define $\Phi_{\tau}: V \rightarrow U$ via $\Phi_{\tau}(q)=\gamma_{q}(\tau)$. Then

$$
\frac{d}{d \tau} \Phi_{\tau}=X_{\tau} \circ \Phi_{\tau}
$$

Almost Complex Structures

Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if $g(.,):.=\omega(., J$.$) is a Riemannian structure on M$: Symmefic \& pos. definite

Almost Complex Structures

Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if $g(.,):.=\omega(., J$.$) is a Riemannian structure on M$.
(ii) ω is taming J if $\omega(X, J X) \geq c\|X\|_{g}^{2}$ for all $X \in T M$, for a constant $c>0$ and a Riemannian metric g with injectivity radius uniformly bounded away from zero and sectional curvature uniformly bounded from above.

Almost Complex Structures

Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if $g(.,):.=\omega(., J$.$) is a Riemannian structure on M$.
(ii) ω is taming J if $\omega(X, J X) \geq c\|X\|_{g}^{2}$ for all $X \in T M$, for a constant $c>0$ and a Riemannian metric g with injectivity radius uniformly bounded away from zero and sectional curvature uniformly bounded from above.

Remark: (1) On a closed manifold any Riemannian metric satisfies the conditions of (ii). In particular, if ω and J are compatible then J is tamed by ω.

Almost Complex Structures

Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if $g(.,):.=\omega(., J$.$) is a Riemannian structure on M$.
(ii) ω is taming J if $\omega(X, J X) \geq c\|X\|_{g}^{2}$ for all $X \in T M$, for a constant $c>0$ and a Riemannian metric g with injectivity radius uniformly bounded away from zero and sectional curvature uniformly bounded from above.

Remark: (1) On a closed manifold any Riemannian metric satisfies the conditions of (ii). In particular, if ω and J are compatible then J is tamed by ω.
(2) From $g(.,):.=\omega(., J$.$) follows that g$ is symmetric if and only if $g(J X, J Y)=g(X, Y)$.
$\Rightarrow J$ is orthogonal, $h(X, Y):=g(X, Y)+i \omega(X, Y)$ defines a Hermitian structure with Kähler form ω.

Almost Complex Structures
Proposition 102: Let M be a closed manifold, J an almost complex structure tamed by symplectic forms $\omega_{k}, k=0,1$, such that $\left[\omega_{0}\right]=\left[\omega_{1}\right] \in H_{D R}^{2}(M)$. Then there is a symplectomorphism $\varphi: M \rightarrow M, \varphi^{*} \omega_{1}=\omega_{0}$.
Proof: $\quad \omega_{1}-\omega_{0}=\alpha \beta \quad \beta \in \Omega^{\prime}\left(M_{1}\right)$

$$
\begin{aligned}
& \omega_{T}=(1-T) \omega_{0}+T \omega_{1}=\omega_{0}+T d \beta \\
& \beta_{T}=\beta: \quad d \beta_{T}=d \beta=\frac{d}{d T} \omega_{T}
\end{aligned}
$$

$X_{T}: \quad X_{T}-\omega_{T}=-\beta \quad$ smooth flunky of recto fields on M
M clone $\Rightarrow 7 \Phi_{T}: h \rightarrow M_{1}$ differ.

$$
\Phi_{0}=i d_{m} \quad \frac{d}{d_{1}} \Phi_{T}=X_{T} \cdot \Phi T
$$

Meson's trickle $\Rightarrow \Phi_{1}^{*} w_{1}=w_{0}$

Almost Complex Structures
Theorem 103: (i) Let (M, ω) be a symplectic manifold. The space of compatible almost complex structures

$$
\mathcal{J}(M, \omega):=\{J \mid J \text { almost complex structure compatible with } \omega\}
$$

is a non-empty contractible space.
(ii) Assume that on a open subset U there is an almost copmplex structure tamed by ω such that $M \backslash U$ is compact, then there is an almost complex structure on M which is tamed by ω.

$$
=S_{p}\left(T_{p} R, \omega_{p}\right) / u(
$$

$$
\simeq \mathbb{R}^{N(n)}
$$

$$
u\left(T_{p} A_{1}, \omega_{p}, J_{0}\right)
$$

Siege's upi half face.
\leadsto forme hade wo $M \& J(H, \omega)=$ race of Eectias D

$$
\begin{aligned}
& S_{p}\left(T_{p} h, w_{p}\right) \\
& =\left\langle\phi: T p h-1 T_{p h} \operatorname{lin} \cdot i 50\right| \\
& \left.d^{*} \omega_{p}=\omega_{p}\right\}
\end{aligned}
$$

Chern Classes of ω

Remark: The closedness $d \omega=0$ plays no role in the proof of Theorem 103. The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

Chern Classes of ω

Remark: The closedness $d \omega=0$ plays no role in the proof of Theorem 103. The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4-manifold admits an almost complex structure (inducing this orientation) if and only if there is a integer class $c \in H_{D R}^{2}(M)$ such that

$$
\int_{M} c^{2}=2 \chi(M)+3 \sigma(M)
$$

S^{4} and $2 k \mathbb{C} P^{2} \sharp 2 \ell \overline{\mathbb{C} P^{2}}$ do not admit almost complex structures for any orientation.

Chern Classes of ω

Remark: The closedness $d \omega=0$ plays no role in the proof of Theorem 103. The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4-manifold admits an almost complex structure (inducing this orientation) if and only if there is a integer class $c \in H_{D R}^{2}(M)$ such that

$$
\int_{M} c^{2}=2 \chi(M)+3 \sigma(M)
$$

S^{4} and $2 k \mathbb{C} P^{2} \sharp 2 \ell \overline{\mathbb{C} P^{2}}$ do not admit almost complex structures for any orientation.

Definition 104: The Chern classes of a symplectic manifold (M, ω) are the Chern classes $c_{k}(T M, J)$ of an almost complex structure J which is compatible to ω.

Chern Classes of ω

Remark: The closedness $d \omega=0$ plays no role in the proof of Theorem 103. The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4-manifold admits an almost complex structure (inducing this orientation) if and only if there is a integer class $c \in H_{D R}^{2}(M)$ such that

$$
\int_{M} c^{2}=2 \chi(M)+3 \sigma(M)
$$

S^{4} and $2 k \mathbb{C} P^{2} \sharp 2 \ell \overline{\mathbb{C} P^{2}}$ do not admit almost complex structures for any orientation.

Definition 104: The Chern classes of a symplectic manifold (M, ω) are the Chern classes $c_{k}(T M, J)$ of an almost complex structure J which is compatible to ω.
Remark: Since the space of such structures is connected via the Chern-Weil construction we see that $c_{k}(M, \omega)$ is well-defined, i.e. does not depend on J.

Proof of Theorem 103

Proof of Theorem 103

