Differential Geometry I

Darboux Theorem and Moser Trick

Klaus Mohnke

July 14, 2020



Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V,w) and a subspace U C V we
define
Ann,(U) :={ve V]|w(v,u)=0 VYue U}
Definition 98: Let (M,w) be a symplectic manifold, ¢ : N — M
an immersion of a manifold N. ¢ is called



Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V,w) and a subspace U C V we
define
Ann,(U) :={ve V]|w(v,u)=0 VYue U}
Definition 98: Let (M,w) be a symplectic manifold, ¢ : N — M
an immersion of a manifold N. ¢ is called

isotropic, if for all p € N/L*(TPN) C Anng, ., (t+(TpN))



Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V,w) and a subspace U C V we

define
Ann,(U) :={ve V|w(v,u)=0 Yue U}

Definition 98: Let (M,w) be a symplectic manifold, ¢ : N — M
an immersion of a manifold N. ¢ is called

isotropic, if for all p € N 1,(TpN) C Anny,, (¢+(TpN))

coisotropic if for all p € N t(TpN) D Annw L* (TpN)) (_.
ie. VElmM W (v a)so ¥ a(-‘ 1pV)



Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V,w) and a subspace U C V we
define
Ann,(U) :={ve V]|w(v,u)=0 VYue U}
Definition 98: Let (M,w) be a symplectic manifold, ¢ : N — M
an immersion of a manifold N. ¢ is called

isotropic, if for all p € N 1,(TpN) C Anny,, (¢+(TpN))

p)

coisotropic if for all p € N 1,.(TpN) D Anng, ., (t+(TpN))

p)
Lagrangian if isotropic and coisotropic.



Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V,w) and a subspace U C V we
define
Ann,(U) :={ve V]|w(v,u)=0 VYue U}
Definition 98: Let (M,w) be a symplectic manifold, ¢ : N — M
an immersion of a manifold N. ¢ is called

isotropic, if for all p € N 1,(TpN) C Anny,, (¢+(TpN))

p)

coisotropic if for all p € N 1,.(TpN) D Anng, ., (t+(TpN))

p)
Lagrangian if isotropic and coisotropic.

Notice: If ¢ is isotropic, then dim N < %dim M, coisotropic, then
dim N > %dim M. Hence, if ¢ is Lagrangian, then
dim N = 5dim M.
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Isotropic, Coisotropic and Lagrangian Immersions

Examples: (1) If dim N =0 or 1, then ¢ is isotropic. If
dim N = n—1 or n, ¢ is coisotropic. Hence, regular curves in
oriented surfaces are Lagrangian.

(2) R" x {0}, {0} x R" C R?" are Lagrangian submanifolds.

(3) The zero section and every fibre in T*M are Lagrangian
submanifolds. If o € QY(Q) then its graph

2 I, = {a(q) € T;Q | g € Q} C T*Q is Lagrangian if and only if
da = 0.
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Isotropic, Coisotropic and Lagrangian Immersions
Examples: (1) If dim N =0 or 1, then ¢ is isotropic. If
dim N = n—1 or n, ¢ is coisotropic. Hence, regular curves in
oriented surfaces are Lagrangian.
(2) R" x {0}, {0} x R" C R?" are Lagrangian submanifolds.
(3) The zero section and every fibre in T*M are Lagrangian
submanifolds. If o € Q1(Q) then its graph
Mo :={a(q) € T;Q| g€ Q} C T*Q is Lagrangian if and only if
da = 0.
(4) Let ¢ : (M1,w1) — (M2,w2) be a symplectomorphism
(dim My = dim My). Then the graph

Mo = {(x,0(x)) | x € M1} C My x My

is a Lagrangian submanifold where the symplectic structure on
My x M, is given by

W= Tiw — Taw. ('c G)‘Qf"x&) 6)
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Darboux’ Theorem
Theorem 99: Let (M,w) be a symplectic manifold, dim M = 2n,
p € M There exists a neighborhood Ukcz{p, R>0and a

symplectomorphisms o

v:(U,w) — (B2"(R),w5t),

i.e. @ is a diffeomorphism such that p*wsg = w.
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Darboux’ Theorem

Theorem 99: Let (M,w) be a symplectic manifold, dim M = 2n,
p € M. there exists a neighborhood U of p, R > 0 and a
symplectomorphisms

v:(U,w) — (B2"(R),wst),
i.e. @ is a diffeomorphism such that p*wsg = w.

Remark: (1) This is in sharp contrast to Riemannian manifolds: a
diffeomeorphism of a neighborhood to an open subset of R” would
be an isometry and implies, that the Riemannian curvature tensor
vanishes identically. In particular, the Theorem means that there
are no meaningful local invariants in symplectic geometry.
(2) The quantity

w(M,w) :=sup{R > 0| I : B>"(R) — M,y*w = we}
is a symplectic invariant, called Gromov width. E.g.

w(B?(R) x R*"~2) = R.



Moser's Trick

Lemma 100: Let (M,w) be a symplectic manifold.
(1) For a smooth family (w;);¢[0,1] of symplectic structures with
wo = w suppose there is a smooth family 3, € Q'(M) such that
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Moser's Trick

Lemma 100: Let (M,w) be a symplectic manifold.
(1) For a smooth family (w;);¢[0,1] of symplectic structures with
wo = w suppose there is a smooth family 3, € Q'(M) such that

d

dB; = —
b dr

Wr.

(2) Assume there is a family @, : U — M of diffeomorphisms onto

their image such that ®¢ = idy, and ek ope S,.g,,,{

d
— &, =X, 0,
dr °

for the family of vector fields defined by
&J“J‘ wT(XT7 ) = _ﬁr

Then
Prw, = w. =) g""j‘ W, =W
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Proof: (i) Obviously ®fwo = wg = w.
(i) Differentiating the left hand side of the equation yields

d (Prwr) = PL(Lx,wr + CZJT) WOT Spwphche
T

O (Xo adwor + d(Xo o) + d) " Awr=0
o:{d(—B,) + dB,) =0. C
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The claim follows. [

Remark: The job consists in establishing the two conditions. To
obtain 5, one uses the idea of Poincaré’e Lemma or assumes that
[wr] € H3R(M) is constant and tools from analysis.
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d dw
—(PFw,) = O (Lx wy + —
( W ) T( X W dr )

dr
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Moser's Trick
Proof: (i) Obviously ®fwo = wg = w.
(i) Differentiating the left hand side of the equation yields

d dw

o) T) — o T -

( W ) T(‘Cer + dr )
— O (X sdwr + d(X,wr) + df:)
— o (d(=B,) + dB.) = 0.

The claim follows. [

Remark: The job consists in establishing the two conditions. To
obtain 5, one uses the idea of Poincaré’e Lemma or assumes that
[wr] € H3R(M) is constant and tools from analysis.

dr

However, (3, is not unique (e.g. replacing (3, by 8, + df;) and the
second condition can be very sensitive to the choice.

Read the proof of Darboux’ Theorem in this light!!
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Darboux Charts
Proof of Theorem 99: W.l.o.g. M = U C R?", p = 0.
(i) Let (v1, ..., v25) C R?" basis such that
(JJO(V2k_1, V2k) = —wO(VQk, V2k_1) =1 and wo(v,-, VJ) =0 else.
Let T € GI(2k;R) such that T(ej) =v;. Then T: U — T(U) is a
diffeomorphism with (T*w)o = wst.
= We may assume that wg = wst.
%:(AStCslq w5t d &r=0 ¢

(ii) Let wy := (1 — 7)w + Tws:. We have wTo = wg forall 7. =
There exists an open neighbourhood U’ C U of p such that

WT|U’

is non-degenerate for all 7 € [0, 1].



Darboux Charts d=0, & stortlapd. Pecast
(iii)?fl.J” C U’ and 8 € QY(U") such that By = 0 and df3 = w.
Define

Bri=1—-71)8+ 76
where 6 :=3>"]_; x?k=1dx2k is the tautological form. Br,0 = 0 for
all 7. Then df; = w;. dp’r‘ - /l.-"r)d )
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Darboux Charts
(ii) U" c U" and 3 € Q(U") such that By = 0 and d3 = w.
Define
Bri=1—-71)8+ 76
where 6 :=3>"]_; x?k=1dx2k is the tautological form. Br,0 = 0 for
all 7. Then df,; = w,.

(iv) Let X; be the vector field on U” such that
XTwr = —fBr.
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Darboux Charts
(i) U" c U and B € QY(U") such that 3y =0 and dj3 = w.
Define
Bri=1—-71)8+ 76
where 6 :=3>"]_; x?k=1dx2k is the tautological form. Br,0 = 0 for
all 7. Then df,; = w,.
(iv) Let X; be the vector field on U” such that

X1wr = —B;.
X:(0) =0 for all 7 € [0, 1].

= there is a neighbourhood V C U” of p such that for all g € V
there exists a unique solution 4 : [0.4] — U” of

Fa(t) = Xe(y(t)) <=
with 15(0) = q.  Nefice Xpz p & € i Sl



Darboux Charts
(ii) U" c U" and 3 € Q(U") such that By = 0 and d3 = w.
Define
Bri=1—-71)8+ 76
where 6 :=3>"]_; x?k=1dx2k is the tautological form. Br,0 = 0 for
all 7. Then df,; = w,.

(iv) Let X; be the vector field on U” such that
X1wr = —B;.
X:(0) =0 for all 7 € [0, 1].

= there is a neighbourhood V C U” of p such that for all g € V
there exists a unique solution 74 : [0, 7] — U” of

Ya(t) = Xe((1))

(v) Define &, : V — U via ©-(q) = 74(r). Then % &
d ) Vs W
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Definition 101: Let (M, w) be a symplectic manifold.
(i) An almost complex structure is compatible to w if . X
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Almost Complex Structures

Definition 101: Let (M, w) be a symplectic manifold.
(i) An almost complex structure is compatible to w if
g(.,.) :=w(.,J.) is a Riemannian structure on M.

(i) w is taming J if w(X, JX) > cHXHé for all X € TM, for a
constant ¢ > 0 and a Riemannian metric g with injectivity radius
uniformly bounded away from zero and sectional curvature
uniformly bounded from above.

Remark: (1) On a closed manifold any Riemannian metric
satisfies the conditions of (ii). In particular, if w and J are
compatible then J is tamed by w.

(2) From g(.,.) :== w(., J.) follows that g is symmetric if and only
if g(UX,JY) = g(X, Y).

= J is orthogonal, h(X,Y) := g(X,Y) + iw(X, Y) defines a
Hermitian structure with Kahler form w.



Almost Complex Structures

Proposition 102: Let M be a closed manifold, J an almost
complex structure tamed by symplectic forms wy, k = 0,1, such
that [wo] = [w1] € HAr(M). Then there is a symplectomorphism
p: M—=M, 0w = wo.

Proof: - W= of(s fﬁ'ﬂr(/')
Wwae ({1-T)ugf THg = W+ Td(s

r=fp ©  Ape=dp= 707
Xr v Yo Cd'r"—(5 i"ﬁpﬁ:’ﬁ
Ao =) F FT P A2E oLifes.
i‘o’:uh) %@f" YTO @f
/1.»:’.[ "‘Ar.é =) ?w( 2wy [2
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Almost Complex Structures

Theorem 103: (i) Let (M, w) be a symplectic manifold. The
space of compatible almost complex structures

J(M,w) :={J | J almost complex structure compatible with w}

is a non-empty contractible space.

(i) Assume that on a open subset U there is an almost cofmplex
structure tamed by w such that M\ U is compact, then there is an
almost complex structure on M which is tamed by w.

Proof: ]( Tt c"p\ {] | ?(‘W«fk °4 5

m.fql-.ug ‘-\n';‘g ‘Jp
NI _ S Tehry)
,-'[j : I,;I-ﬂpﬁ G- U", M) 5"(_"?“/ w’lg‘}
4wy ey b = L‘ﬂf uppr Ld] oy,

ny forna Audle > M &J(ﬁ,w)z e of kokos 7
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Chern Classes of w
Remark: The closedness dw = 0 plays no role in the proof of
Theorem 103. The existence of an almost complex structure
provides an obstruction to the existence of a symplectic structure.
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complex structure (inducing this orientation) if and only if there is
a integer class ¢ € H35(M) such that

/ c? = 2x(M) 4 30(M).
M

S* and 2kCP?#2/CP? do not admit almost complex structures for
any orientation.
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Chern Classes of w
Remark: The closedness dw = 0 plays no role in the proof of
Theorem 103. The existence of an almost complex structure
provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4—manifold admits an almost
complex structure (inducing this orientation) if and only if there is
a integer class ¢ € H35(M) such that

/ c? = 2x(M) 4 30(M).
M

S* and 2kCP?#2/CP? do not admit almost complex structures for
any orientation.

Definition 104: The Chern classes of a symplectic manifold
(M,w) are the Chern classes cx(TM, J) of an almost complex
structure J which is compatible to w.

Remark: Since the space of such structures is connected via the
Chern-Weil construction we see that ¢, (M,w) is well-defined,
i.e. does not depend on J.
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