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Isotropic, Coisotropic and Lagrangian Immersions
For a symplectic vector space (V , ω) and a subspace U ⊂ V we
define

Annω(U) := {v ∈ V | ω(v , u) = 0 ∀u ∈ U}.
Definition 98: Let (M, ω) be a symplectic manifold, ι : N → M
an immersion of a manifold N. ι is called

isotropic, if for all p ∈ N ι∗(TpN) ⊂ Annωι(p)(ι∗(TpN))

coisotropic if for all p ∈ N ι∗(TpN) ⊃ Annωι(p)(ι∗(TpN))
Lagrangian if isotropic and coisotropic.

Notice: If ι is isotropic, then dim N ≤ 1
2 dim M, coisotropic, then

dim N ≥ 1
2 dim M. Hence, if ι is Lagrangian, then

dim N = 1
2 dim M.
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Isotropic, Coisotropic and Lagrangian Immersions
Examples: (1) If dim N = 0 or 1, then ι is isotropic. If
dim N = n − 1 or n, ι is coisotropic.

Hence, regular curves in
oriented surfaces are Lagrangian.
(2) Rn × {0}, {0} × Rn ⊂ R2n are Lagrangian submanifolds.
(3) The zero section and every fibre in T ∗M are Lagrangian
submanifolds. If α ∈ Ω1(Q) then its graph
Γα := {α(q) ∈ T ∗q Q | q ∈ Q} ⊂ T ∗Q is Lagrangian if and only if
dα = 0.
(4) Let ϕ : (M1, ω1)→ (M2, ω2) be a symplectomorphism
(dim M1 = dim M2). Then the graph

Γϕ := {(x , ϕ(x)) | x ∈ M1} ⊂ M1 ×M2

is a Lagrangian submanifold where the symplectic structure on
M1 ×M2 is given by

ω := π∗1ω1 − π∗2ω1.
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Darboux’ Theorem
Theorem 99: Let (M, ω) be a symplectic manifold, dim M = 2n,
p ∈ M. there exists a neighborhood U of p, R > 0 and a
symplectomorphisms

ϕ : (U, ω)→ (B2n(R), ωst),

i.e. ϕ is a diffeomorphism such that ϕ∗ωst = ω.

Remark: (1) This is in sharp contrast to Riemannian manifolds: a
diffeomeorphism of a neighborhood to an open subset of Rn would
be an isometry and implies, that the Riemannian curvature tensor
vanishes identically. In particular, the Theorem means that there
are no meaningful local invariants in symplectic geometry.

(2) The quantity

w(M, ω) := sup{R > 0 | ∃ψ : B2n(R) ↪→ M, ψ∗ω = ωst}

is a symplectic invariant, called Gromov width. E.g.

w(B2(R)× R2n−2) = R.
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Moser’s Trick
Lemma 100: Let (M, ω) be a symplectic manifold.
(1) For a smooth family (ωτ )τ∈[0,1] of symplectic structures with
ω0 = ω suppose there is a smooth family βτ ∈ Ω1(M) such that

dβτ = d
dτ ωτ .

(2) Assume there is a family Φτ : U → M of diffeomorphisms onto
their image such that Φ0 = idU , and

d
dτ Φτ = Xτ ◦ Φτ

for the family of vector fields defined by

ωτ (Xτ , .) = −βτ .

Then
Φ∗τωτ = ω.
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Moser’s Trick
Proof: (i) Obviously Φ∗0ω0 = ω0 = ω.

(ii) Differentiating the left hand side of the equation yields

d
dτ (Φ∗τωτ ) = Φ∗τ (LXτωτ + dωτ

dτ )

= Φ∗τ (Xτydωτ + d(Xτyωτ ) + dβτ )
= Φ∗τ (d(−βτ ) + dβτ ) = 0.

The claim follows. �
Remark: The job consists in establishing the two conditions. To
obtain βτ one uses the idea of Poincaré’e Lemma or assumes that
[ωτ ] ∈ H2

DR(M) is constant and tools from analysis.

However, βτ is not unique (e.g. replacing βτ by βτ + dfτ ) and the
second condition can be very sensitive to the choice.

Read the proof of Darboux’ Theorem in this light!!
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Darboux Charts
Proof of Theorem 99: W.l.o.g. M = U ⊂ R2n, p = 0.

(i) Let (v1, ..., v2n) ⊂ R2n basis such that
ω0(v2k−1, v2k) = −ω0(v2k , v2k−1) = 1 and ω0(vi , vj) = 0 else.
Let T ∈ Gl(2k;R) such that T (ej) = vj . Then T : U → T (U) is a
diffeomorphism with (T ∗ω)0 = ωst .
⇒ We may assume that ω0 = ωst .

(ii) Let ωτ := (1− τ)ω + τωst . We have ωτ,0 = ωst for all τ . ⇒
There exists an open neighbourhood U ′ ⊂ U of p such that

ωτ |U′

is non-degenerate for all τ ∈ [0, 1].
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Darboux Charts
(iii) U ′′ ⊂ U ′ and β ∈ Ω1(U ′′) such that β0 = 0 and dβ = ω.
Define

βτ := (1− τ)β + τθ

where θ :=
∑n

k=1 x2k−1dx2k is the tautological form. βτ,0 = 0 for
all τ . Then dβτ = ωτ .

(iv) Let Xτ be the vector field on U ′′ such that
Xτyωτ = −βτ .

Xτ (0) = 0 for all τ ∈ [0, 1].
⇒ there is a neighbourhood V ⊂ U ′′ of p such that for all q ∈ V
there exists a unique solution γq : [0, τ ]→ U ′′ of

γ̇q(t) = Xt(γ(t))
with γq(0) = q.
(v) Define Φτ : V → U via Φτ (q) = γq(τ). Then

d
dτ Φτ = Xτ ◦ Φτ . �
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Almost Complex Structures

Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if
g(., .) := ω(., J .) is a Riemannian structure on M.

(ii) ω is taming J if ω(X , JX ) ≥ c‖X‖2g for all X ∈ TM, for a
constant c > 0 and a Riemannian metric g with injectivity radius
uniformly bounded away from zero and sectional curvature
uniformly bounded from above.

Remark: (1) On a closed manifold any Riemannian metric
satisfies the conditions of (ii). In particular, if ω and J are
compatible then J is tamed by ω.

(2) From g(., .) := ω(., J .) follows that g is symmetric if and only
if g(JX , JY ) = g(X ,Y ).
⇒ J is orthogonal, h(X ,Y ) := g(X ,Y ) + iω(X ,Y ) defines a
Hermitian structure with Kähler form ω.
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Hermitian structure with Kähler form ω.
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g(., .) := ω(., J .) is a Riemannian structure on M.
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Almost Complex Structures

Proposition 102: Let M be a closed manifold, J an almost
complex structure tamed by symplectic forms ωk , k = 0, 1, such
that [ω0] = [ω1] ∈ H2

DR(M). Then there is a symplectomorphism
ϕ : M → M, ϕ∗ω1 = ω0.

Proof:



Almost Complex Structures
Theorem 103: (i) Let (M, ω) be a symplectic manifold. The
space of compatible almost complex structures

J (M, ω) := {J | J almost complex structure compatible with ω}

is a non-empty contractible space.
(ii) Assume that on a open subset U there is an almost copmplex
structure tamed by ω such that M \ U is compact, then there is an
almost complex structure on M which is tamed by ω.

Proof:





Chern Classes of ω
Remark: The closedness dω = 0 plays no role in the proof of
Theorem 103. The existence of an almost complex structure
provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4–manifold admits an almost
complex structure (inducing this orientation) if and only if there is
a integer class c ∈ H2

DR(M) such that∫
M

c2 = 2χ(M) + 3σ(M).

S4 and 2kCP2]2`CP2 do not admit almost complex structures for
any orientation.

Definition 104: The Chern classes of a symplectic manifold
(M, ω) are the Chern classes ck(TM, J) of an almost complex
structure J which is compatible to ω.
Remark: Since the space of such structures is connected via the
Chern-Weil construction we see that ck(M, ω) is well-defined,
i.e. does not depend on J .
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