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Theorem 103: (i) Let (M, w) be a symplectic manifold. The
space of compatible almost complex structures

J(M,w) :={J | J almost complex structure compatible with w}

is a non-empty contractible space.

(ii) Assume that on a open subset U there is an almost copmplex
structure tamed by w such that M\ U is compact, then there is an
almost complex structure on M which is tamed by w.



Almost Complex Structures

Proof 2:  The closedness dw = 0 plays no role in the proof.
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Chern Classes of w

Remark: The existence of an almost complex structure provides
an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4—manifold admits an almost
complex structure (inducing this orientation) if and only if there is
an integer class ¢ € H35(M) such that [ u*c for u: ¥ — M is
even if and only if u* TM admits a spin structure (X a closed
oriented surface) and

/ c? = 2x(M) + 30(M).
M

S* and 2kCP?#2/CP? do not admit almost complex structures for
any orientation.

Definition 104: The Chern classes of a symplectic manifold
(M, w) are the Chern classes cx(TM, J) of an almost complex
structure J which is compatible to w.

Remark: Since the space of such structures is connected, via the
Chern-Weil construction we see that ¢, (M, w) is well-defined.
i.e. does not depend on J.
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Remark: We have seen that a Riemannian metric g defines such j
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J is also always integrable, thus given and determining a complex
structure on X. (X, /) is thus called complex curve.

Definition 106: Let (M, J) be an almost complex manifold. A
J—holomorphic (or pseudoholomorphic) curve is a Riemann
surface (X, /) together with a map v : ¥ — M such that for all
zex

dzu o jpz = Jy(z) 0 dzu.
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In complex coordinates, z = x + iy, this takes the form
0 0
&)+ )5 () =0

These are the Cauchy-Riemann equations (cp. with M = C and
J=1i).
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In complex coordinates, z = x + iy, this takes the form

These are the Cauchy-Riemann equations (cp. with M = C and
J=1i).

Proposition 107: Let h be a Hermitian metric on M, w its
Kéhler form, v : (X, /) — (M, J) a J-holomorphic curve. Then v*w .
is compatible with the orientation of (X, ) wherever d,u # 0.
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Exact Lagrangian Submanifolds
Let (M,w) be a symplectic manifold with an exact symplectic
form, i.e. w = da for a one form a € QY(M) (e.g. (C",we). If
L C M is a Lagrangian submanifold, then a7, defines a closed
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Exact Lagrangian Submanifolds
Let (M,w) be a symplectic manifold with an exact symplectic
form, i.e. w = da for a one form a € QY(M) (e.g. (C",we). If
L C M is a Lagrangian submanifold, then a7, defines a closed
one form on L

Definition 108: The Lagrangian L is called exact if |7, is exact.
i.e. there exists a smooth function f : L — R such that df = a|7;.

Theorem 109 (Gromov): There exists no closed, exact
Lagrangian submanifold in (C", wst).

Remark: This can be considered as a generalization of Jordan’s
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Non-Squeezing

Theorem 110 (Gromov): Let Z2"(R) := B?(R) x R?"=2 C R?"
and Bz”(r) C R?" be equipped with the standard symplectic
structure. Assume there is an embedding

@ : B*(r) C Z*"(R)

which is a symplectomorphism onto its image: ¢*wst = wst. Then
r<R.
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Theorem 110 (Gromov): Let Z2"(R) := B?(R) x R?"=2 C R?"
and Bz”(r) C R?" be equipped with the standard symplectic
structure. Assume there is an embedding

@ : B*(r) C Z*"(R)

which is a symplectomorphism onto its image: ¢*wst = wst. Then
r<R.

Notice that there is a volume preserving embedding (only
obstruction is the volume). We conclude

Corollary: The group of symplectomorphisms, Symp_(R?"), of

R2" with compact support is not dense in C%topology in the

group of volume preserving diffeomorphisms with compact support.

Let ¢ : R2" — R?" be a volume preserving diffeomorphism such<§w
that o(B?"(2R)) C Z?"(R). Then there is no sequence Ll

(¢x)k C Symp.(IR2") such that ¢ — ¢ uniformly (in €%).  #>#7
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Monotonicity
For the proof of Theorem 110 we will need the following

Proposition 111: Let u: (X, ) — C" be a holomorphic curve (in
Algebra: "complex curve”), u(p) =0 for p € ¥ and r > 0 such
that u=1(B?"(r)) C T is compact. Then
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Proposition 111: Let u: (X, ) — C” be a holomorphic curve (in
Algebra: "complex curve”), u(p) =0 for p € ¥ and r > 0 such
that u=1(B?"(r)) C T is compact. Then

area(u(X)) > Tr2.
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Proof of Non-Squeezing

Embedd ¢ : (Z27(R),wst) < (S?(R) x R?"2 w) =: (M,w) with
w = TjwR + Thwst, where wr € S? area form with
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w = TjwR + Thwst, where wr € S? area form with

2
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Sufficient to show that ¢ : (B?"(r),wst) — (M,w) implies r < R.
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