Differential Geometry II Holomorphic Curves

Klaus Mohnke

July 16, 2020

Definition 101: Let (M, ω) be a symplectic manifold.

(i) An almost complex structure is **compatible** to ω if $g(.,.) := \omega(.,J.)$ is a Riemannian structure on M.

Definition 101: Let (M, ω) be a symplectic manifold.

- (i) An almost complex structure is **compatible** to ω if $g(.,.) := \omega(.,J.)$ is a Riemannian structure on M.
- (ii) ω is **taming** J if $\omega(X,JX) \geq c\|X\|_g^2$ for all $X \in TM$, for a constant c>0 and a Riemannian metric g with injectivity radius uniformly bounded away from zero and sectional curvature uniformly bounded from above.

- **Definition 101:** Let (M, ω) be a symplectic manifold.
- (i) An almost complex structure is **compatible** to ω if $g(.,.) := \omega(.,J.)$ is a Riemannian structure on M.
- (ii) ω is **taming** J if $\omega(X,JX) \geq c\|X\|_g^2$ for all $X \in TM$, for a constant c > 0 and a Riemannian metric g with injectivity radius uniformly bounded away from zero and sectional curvature uniformly bounded from above.
- **Theorem 103:** (i) Let (M, ω) be a symplectic manifold. The space of compatible almost complex structures

$$\mathcal{J}(M,\omega) := \{J \mid J \text{ almost complex structure compatible with } \omega\}$$

is a non-empty contractible space.

(ii) Assume that on a open subset U there is an almost copmplex structure tamed by ω such that $M \setminus U$ is compact, then there is an almost complex structure on M which is tamed by ω .

Proof 2: The closedness $d\omega = 0$ plays no role in the proof.

If: We show
$$A - A^2 = (-A^2 A^{-1})$$
: $-A^2$ is disjoint table.

Let $E_{\lambda} = \langle v \in V | -Av = \lambda v \mid y$
 $A^{\frac{1}{2}}(-A^2) = -A = (-A^2)A^{\frac{1}{2}} = A^{-\frac{1}{2}}(E_{\lambda}) = E_{\lambda}$
 $\lambda \in E_{\lambda} = (-A^2)(A^{\frac{1}{2}}v) = A^{-\frac{1}{2}}(-A^2)v = \lambda(A^{\frac{1}{2}}v)$

Lambackion of $I - A^2 : E_{\lambda} = \{v \in V | I - A^2 v = I_{\lambda} v_{\lambda}\} \Rightarrow China

a) $\omega(\lambda, j\omega) = g(v, A^{\frac{1}{2}}\omega) = g(v, A^{\frac{1}{2}} - A^2 v) = g^{\frac{1}{2}}(-A^2 v) \Rightarrow g \text{ in symmetric}$
 $-A^2 - A^2 = (I - A^2)^3$ is regularlice with positive algorithm as greation = $g \in I_{\lambda} \cap I_{\lambda} \cap I_{\lambda}$

b) $I = A^{-\frac{1}{2}}(I - A^2)^3 = A^{-\frac{1}{2}}(I - A^2)^2 = A^{-\frac{1}{2}}(I - A^2) = -Id$

2) Meanantal, $u \in I_{\lambda} \cap I_{\lambda} \cap I_{\lambda} \cap I_{\lambda} \cap I_{\lambda} \cap I_{\lambda}$

g Resonantal metric (Almosph position of parity) as $A \in A$ (7H)

(N) $I \in A$ (TM) as regard.$

Remark: The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

Remark: The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4–manifold admits an almost complex structure (inducing this orientation) if and only if there is an integer class $c \in H^2_{DR}(M)$ such that $\int u^*c$ for $u: \Sigma \to M$ is even if and only if u^*TM admits a spin structure (Σ a closed oriented surface) and

$$\int_M c^2 = 2\chi(M) + 3\sigma(M).$$

 S^4 and $2k\mathbb{C}P^2\sharp 2\ell\overline{\mathbb{C}P^2}$ do not admit almost complex structures for any orientation.

Remark: The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4–manifold admits an almost complex structure (inducing this orientation) if and only if there is an integer class $c \in H^2_{DR}(M)$ such that $\int u^*c$ for $u:\Sigma \to M$ is even if and only if u^*TM admits a spin structure (Σ a closed oriented surface) and

$$\int_M c^2 = 2\chi(M) + 3\sigma(M).$$

 S^4 and $2k\mathbb{C}P^2\sharp 2\ell\overline{\mathbb{C}P^2}$ do not admit almost complex structures for any orientation.

Definition 104: The **Chern classes** of a symplectic manifold (M, ω) are the Chern classes $c_k(TM, J)$ of an almost complex structure J which is compatible to ω .

Remark: The existence of an almost complex structure provides an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4–manifold admits an almost complex structure (inducing this orientation) if and only if there is an integer class $c \in H^2_{DR}(M)$ such that $\int u^*c$ for $u:\Sigma \to M$ is even if and only if u^*TM admits a spin structure (Σ a closed oriented surface) and

$$\int_M c^2 = 2\chi(M) + 3\sigma(M).$$

 S^4 and $2k\mathbb{C}P^2\sharp 2\ell\overline{\mathbb{C}P^2}$ do not admit almost complex structures for any orientation.

Definition 104: The **Chern classes** of a symplectic manifold (M, ω) are the Chern classes $c_k(TM, J)$ of an almost complex structure J which is compatible to ω .

Remark: Since the space of such structures is connected, via the Chern-Weil construction we see that $c_k(M,\omega)$ is well-defined. i.e. does not depend on J.

Definition 105: A Riemann surface (Σ, j) is an oriented surface Σ equipped with an almost complex structure j.

Definition 105: A Riemann surface (Σ, j) is an oriented surface Σ equipped with an almost complex structure j.

Remark: We have seen that a Riemannian metric g defines such j (by counterclockwise rotation by $\pi/2$). j remains unchanged if g is replaced by $\lambda^2 g$, i.e. determined by the **conformal class** of g - and determining it.

Definition 105: A Riemann surface (Σ, j) is an oriented surface Σ equipped with an almost complex structure j.

Remark: We have seen that a Riemannian metric g defines such j (by counterclockwise rotation by $\pi/2$). j remains unchanged if g is replaced by $\lambda^2 g$, i.e. determined by the **conformal class** of g - and determining it.

j is also always integrable, thus given and determining a **complex** structure on Σ . (Σ, j) is thus called **complex curve**.

Definition 105: A Riemann surface (Σ, j) is an oriented surface Σ equipped with an almost complex structure j.

Remark: We have seen that a Riemannian metric g defines such j (by counterclockwise rotation by $\pi/2$). j remains unchanged if g is replaced by $\lambda^2 g$, i.e. determined by the **conformal class** of g - and determining it.

j is also always integrable, thus given and determining a **complex** structure on Σ . (Σ, j) is thus called **complex curve**.

Definition 106: Let (M,J) be an almost complex manifold. A J-holomorphic (or **pseudoholomorphic**) curve is a Riemann surface (Σ,j) together with a map $u:\Sigma\to M$ such that for all $z\in\Sigma$

$$d_z u \circ j_p z = J_{u(z)} \circ d_z u.$$

In complex coordinates, z = x + iy, this takes the form

$$\frac{\partial u}{\partial x}(z) + J(u(z))\frac{\partial u}{\partial y}(z) = 0.$$

These are the **Cauchy-Riemann equations** (cp. with $M = \mathbb{C}$ and J = i).

In complex coordinates, z = x + iy, this takes the form

$$\frac{\partial u}{\partial x}(z) + J(u(z))\frac{\partial u}{\partial y}(z) = 0.$$

These are the **Cauchy-Riemann equations** (cp. with $M = \mathbb{C}$ and J = i).

Proposition 107: Let h be a Hermitian metric on M, ω its Kähler form, $u:(\Sigma,j)\to (M,J)$ a J-holomorphic curve. Then $u^*\omega$ is compatible with the orientation of (Σ,j) wherever $d_zu\neq 0$.

Proof:
$$u^{*}\omega_{1}(\frac{1}{2},\frac{3}{29}) + \omega_{12}(\frac{1}{2},\frac{3}{29}) = \omega_{22}(\frac{3}{2},\frac{3}{29}) - \omega_{22}(\frac$$

Let (M,ω) be a symplectic manifold with an exact symplectic form, i.e. $\omega=d\alpha$ for a one form $\alpha\in\Omega^1(M)$ (e.g. $(\mathbb{C}^n,\omega_{st})$. If $L\subset M$ is a Lagrangian submanifold, then $\alpha|_{TL}$ defines a closed one form on L

Let (M,ω) be a symplectic manifold with an exact symplectic form, i.e. $\omega=d\alpha$ for a one form $\alpha\in\Omega^1(M)$ (e.g. $(\mathbb{C}^n,\omega_{st})$. If $L\subset M$ is a Lagrangian submanifold, then $\alpha|_{\mathcal{T}L}$ defines a closed one form on L

Definition 108: The Lagrangian L is called **exact** if $\alpha|_{TL}$ is exact. i.e. there exists a smooth function $f: L \to \mathbb{R}$ such that $df = \alpha|_{TL}$.

Let (M,ω) be a symplectic manifold with an exact symplectic form, i.e. $\omega=d\alpha$ for a one form $\alpha\in\Omega^1(M)$ (e.g. $(\mathbb{C}^n,\omega_{st})$. If $L\subset M$ is a Lagrangian submanifold, then $\alpha|_{TL}$ defines a closed one form on L

Definition 108: The Lagrangian L is called **exact** if $\alpha|_{TL}$ is exact. i.e. there exists a smooth function $f: L \to \mathbb{R}$ such that $df = \alpha|_{TL}$.

Theorem 109 (Gromov): There exists no closed, exact Lagrangian submanifold in $(\mathbb{C}^n, \omega_{st})$.

Proof: Granov:
$$\exists a: \Delta < C \rightarrow C^2$$

A=(4 $\in C$ | 12|5|)

Reproof: $A = A = A = C = C^2$

A=(4 $\in C$ | 12|5|)

Reproof: $A = A = C = C^2$

A=(4 $\in C$ | 12|5|)

A=(3A) $\in C$

Theorem 110 (Gromov): Let $Z^{2n}(R) := B^2(R) \times \mathbb{R}^{2n-2} \subset \mathbb{R}^{2n}$ and $B^{2n}(r) \subset \mathbb{R}^{2n}$ be equipped with the standard symplectic structure. Assume there is an embedding

$$\varphi: B^{2n}(r) \subset Z^{2n}(R)$$

which is a symplectomorphism onto its image: $\varphi^*\omega_{st} = \omega_{st}$. Then $r \leq R$.

Theorem 110 (Gromov): Let $Z^{2n}(R) := B^2(R) \times \mathbb{R}^{2n-2} \subset \mathbb{R}^{2n}$ and $B^{2n}(r) \subset \mathbb{R}^{2n}$ be equipped with the standard symplectic structure. Assume there is an embedding

$$\varphi: B^{2n}(r) \subset Z^{2n}(R)$$

which is a symplectomorphism onto its image: $\varphi^*\omega_{st}=\omega_{st}$. Then $r\leq R$.

Notice that there is a volume preserving embedding (only obstruction is the volume). We conclude

Theorem 110 (Gromov): Let $Z^{2n}(R) := B^2(R) \times \mathbb{R}^{2n-2} \subset \mathbb{R}^{2n}$ and $B^{2n}(r) \subset \mathbb{R}^{2n}$ be equipped with the standard symplectic structure. Assume there is an embedding

$$\varphi: B^{2n}(r) \subset Z^{2n}(R)$$

which is a symplectomorphism onto its image: $\varphi^*\omega_{st} = \omega_{st}$. Then r < R.

Notice that there is a volume preserving embedding (only obstruction is the volume). We conclude

Corollary: The group of symplectomorphisms, $\operatorname{Symp}_c(\mathbb{R}^{2n})$, of \mathbb{R}^{2n} with compact support is not dense in C^0 -topology in the group of volume preserving diffeomorphisms with compact support.

Theorem 110 (Gromov): Let $Z^{2n}(R) := B^2(R) \times \mathbb{R}^{2n-2} \subset \mathbb{R}^{2n}$ and $B^{2n}(r) \subset \mathbb{R}^{2n}$ be equipped with the standard symplectic structure. Assume there is an embedding

$$\varphi: B^{2n}(r) \subset Z^{2n}(R)$$

which is a symplectomorphism onto its image: $\varphi^*\omega_{st}=\omega_{st}$. Then $r\leq R$.

Notice that there is a volume preserving embedding (only obstruction is the volume). We conclude

Corollary: The group of symplectomorphisms, $\operatorname{Symp}_c(\mathbb{R}^{2n})$, of \mathbb{R}^{2n} with compact support is not dense in C^0 -topology in the group of volume preserving diffeomorphisms with compact support. Let $\varphi_0: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be a volume preserving diffeomorphism such that $\varphi_0(B^{2n}(2R)) \subset Z^{2n}(R)$. Then there is no sequence $(\varphi_k)_k \subset \operatorname{Symp}_c(\mathbb{R}^{2n})$ such that $\varphi_k \to \varphi_0$ uniformly (in C^0).

Non-Squeezing → €70 If there was such segmence of ko: + (3ho ((1/2-1/6)/22/38) 60 < E. $\mathcal{E} < d\omega / (8.(3^{24}(\frac{3R}{2})), \partial Z^{24}(R)) = 94(3^{24}(\frac{3R}{2})) \subset Z^{24}(R)$ Remark: Land statement indicates examice of synglectic topology: Grown's L-principle: M^{2n} closed, $g \in \mathcal{N}^{2n}(M)$ usually, $a \in H^{2n}(M)$. $n \ge 2$ s.t. $a^{2n} \in H^{2n}(M)$ value form I symplectic shooting $\omega \in \Lambda^2(\Lambda | \chi p^5)$ p & M arbitag · 6 = 2/15/49 · [W] = a[K12p5 a cademic direction: If corollary coan not true, one could extend to so all of M. Non-hined fad. Most everytes found later! I worker: There are M which adout & & a an above I so which there exists no symplectic showher

Monotonicity

For the proof of Theorem 110 we will need the following

Proposition 111: Let $u:(\Sigma,j)\to\mathbb{C}^n$ be a holomorphic curve (in Algebra: "complex curve"), u(p)=0 for $p\in\Sigma$ and r>0 such that $u^{-1}(B^{2n}(r))\subset\Sigma$ is compact. Then

Monotonicity

For the proof of Theorem 110 we will need the following

Proposition 111: Let $u:(\Sigma,j)\to\mathbb{C}^n$ be a holomorphic curve (in Algebra: "complex curve"), u(p)=0 for $p\in\Sigma$ and r>0 such that $u^{-1}(B^{2n}(r))\subset\Sigma$ is compact. Then

· w lave dolo(., J.) por sun diffute. $\Rightarrow 0 \in \int n' d\alpha_0 = \int n'' d\alpha_0 - \int n'' d\alpha_0$ $\sum_{i} |\Sigma_i| = \partial \Sigma_i$ ·] x c u(I) dow to 0 s.t. : · h (x) comish of 1 post p · dpi 2 +0. typlace p by p' & n by u-n(p'). Then: $\lim_{s\to 0} \int u^s ds = \int u^{\infty} ds = \pi (\tau')^2 3 \pi \tau^2$ no: 1 -7 (, no (2) = (121, ., 122), >= dpu((0)). $= 1 \qquad \int_{\overline{L}} u^{A} \omega \quad 3 \cdot \int_{\overline{L}} u^{A}$

Proof of Non-Squeezing

Embedd $\iota: (Z^{2n}(R), \omega_{st}) \hookrightarrow (S^2(R) \times \mathbb{R}^{2n-2}, \omega) =: (M, \omega)$ with $\omega = \pi_1^* \omega_R + \pi_2^* \omega_{st}$, where $\omega_R \in S^2$ area form with

$$\int_{S}^{2} \omega_{R} = \pi R^{2}.$$

Proof of Non-Squeezing

Embedd $\iota: (Z^{2n}(R), \omega_{st}) \hookrightarrow (S^2(R) \times \mathbb{R}^{2n-2}, \omega) =: (M, \omega)$ with $\omega = \pi_1^* \omega_R + \pi_2^* \omega_{st}$, where $\omega_R \in S^2$ area form with

$$\int_{S}^{2} \omega_{R} = \pi R^{2}.$$

Sufficient to show that $\varphi: (B^{2n}(r), \omega_{st}) \hookrightarrow (M, \omega)$ implies $r \leq R$.

Remeli: If
$$\tau - \varepsilon \leq R$$
 for any $\varepsilon > 0$ doin form.

Nother of an expectate J_i allows to combined sad J_i on R s.t.

$$J_i = \left(\frac{3^{2n}(r - \varepsilon)}{r} \right) = \frac{9}{4} J_{54}$$

$$J_i = \frac{3^{2n}(r - \varepsilon)}{r} = \frac{3}{4} J_{54}$$

I S. Rol. n: 5 h s.V. $n(N) = \varphi(0).$ ma mo: 5° -> M $N_0(z) = (Z, Y)$ VERT S. J. MO (5) < BY (3"(41) $n_0 \cdot J - kR$. $S = J n_0 \cdot \omega = \pi R^2$. y*~= a => Sa " = Sa " = \$ [/9 6 4) " a

a-1 (p (8 24 (r-E)) 4-1 (p (324 (r-E))) 3 TI (8-E)2 => R34-E I