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Almost Complex Structures
Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if
g(., .) := ω(., J .) is a Riemannian structure on M.

(ii) ω is taming J if ω(X , JX ) ≥ c‖X‖2g for all X ∈ TM, for a
constant c > 0 and a Riemannian metric g with injectivity radius
uniformly bounded away from zero and sectional curvature
uniformly bounded from above.

Theorem 103: (i) Let (M, ω) be a symplectic manifold. The
space of compatible almost complex structures

J (M, ω) := {J | J almost complex structure compatible with ω}

is a non-empty contractible space.
(ii) Assume that on a open subset U there is an almost copmplex
structure tamed by ω such that M \ U is compact, then there is an
almost complex structure on M which is tamed by ω.



Almost Complex Structures
Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if
g(., .) := ω(., J .) is a Riemannian structure on M.

(ii) ω is taming J if ω(X , JX ) ≥ c‖X‖2g for all X ∈ TM, for a
constant c > 0 and a Riemannian metric g with injectivity radius
uniformly bounded away from zero and sectional curvature
uniformly bounded from above.

Theorem 103: (i) Let (M, ω) be a symplectic manifold. The
space of compatible almost complex structures

J (M, ω) := {J | J almost complex structure compatible with ω}

is a non-empty contractible space.
(ii) Assume that on a open subset U there is an almost copmplex
structure tamed by ω such that M \ U is compact, then there is an
almost complex structure on M which is tamed by ω.



Almost Complex Structures
Definition 101: Let (M, ω) be a symplectic manifold.
(i) An almost complex structure is compatible to ω if
g(., .) := ω(., J .) is a Riemannian structure on M.

(ii) ω is taming J if ω(X , JX ) ≥ c‖X‖2g for all X ∈ TM, for a
constant c > 0 and a Riemannian metric g with injectivity radius
uniformly bounded away from zero and sectional curvature
uniformly bounded from above.

Theorem 103: (i) Let (M, ω) be a symplectic manifold. The
space of compatible almost complex structures

J (M, ω) := {J | J almost complex structure compatible with ω}

is a non-empty contractible space.
(ii) Assume that on a open subset U there is an almost copmplex
structure tamed by ω such that M \ U is compact, then there is an
almost complex structure on M which is tamed by ω.



Almost Complex Structures
Proof 2: The closedness dω = 0 plays no role in the proof.
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Chern Classes of ω
Remark: The existence of an almost complex structure provides
an obstruction to the existence of a symplectic structure.

For example: An oriented closed 4–manifold admits an almost
complex structure (inducing this orientation) if and only if there is
an integer class c ∈ H2

DR(M) such that
∫

u∗c for u : Σ→ M is
even if and only if u∗TM admits a spin structure (Σ a closed
oriented surface) and∫

M
c2 = 2χ(M) + 3σ(M).

S4 and 2kCP2]2`CP2 do not admit almost complex structures for
any orientation.
Definition 104: The Chern classes of a symplectic manifold
(M, ω) are the Chern classes ck(TM, J) of an almost complex
structure J which is compatible to ω.
Remark: Since the space of such structures is connected, via the
Chern-Weil construction we see that ck(M, ω) is well-defined.
i.e. does not depend on J .
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Pseudoholomorphic Curves

Definition 105: A Riemann surface (Σ, j) is an oriented surface
Σ equipped with an almost complex structure j .

Remark: We have seen that a Riemannian metric g defines such j
(by counterclockwise rotation by π/2). j remains unchanged if g is
replaced by λ2g , i.e. determined by the conformal class of g - and
determining it.

j is also always integrable, thus given and determining a complex
structure on Σ. (Σ, j) is thus called complex curve.

Definition 106: Let (M, J) be an almost complex manifold. A
J–holomorphic (or pseudoholomorphic) curve is a Riemann
surface (Σ, j) together with a map u : Σ→ M such that for all
z ∈ Σ

dzu ◦ jpz = Ju(z) ◦ dzu.
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Pseudoholomorphic Curves
In complex coordinates, z = x + iy , this takes the form

∂u
∂x (z) + J(u(z))∂u

∂y (z) = 0.

These are the Cauchy-Riemann equations (cp. with M = C and
J = i).

Proposition 107: Let h be a Hermitian metric on M, ω its
Kähler form, u : (Σ, j)→ (M, J) a J–holomorphic curve.Then u∗ω
is compatible with the orientation of (Σ, j) wherever dzu 6= 0.

Proof:
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Exact Lagrangian Submanifolds
Let (M, ω) be a symplectic manifold with an exact symplectic
form, i.e. ω = dα for a one form α ∈ Ω1(M) (e.g. (Cn, ωst). If
L ⊂ M is a Lagrangian submanifold, then α|TL defines a closed
one form on L

Definition 108: The Lagrangian L is called exact if α|TL is exact.
i.e. there exists a smooth function f : L→ R such that df = α|TL.

Theorem 109 (Gromov): There exists no closed, exact
Lagrangian submanifold in (Cn, ωst).

Remark: This can be considered as a generalization of Jordan’s
Curve Theorem.
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Non-Squeezing
Theorem 110 (Gromov): Let Z 2n(R) := B2(R)× R2n−2 ⊂ R2n

and B2n(r) ⊂ R2n be equipped with the standard symplectic
structure. Assume there is an embedding

ϕ : B2n(r) ⊂ Z 2n(R)

which is a symplectomorphism onto its image: ϕ∗ωst = ωst . Then
r ≤ R.

Notice that there is a volume preserving embedding (only
obstruction is the volume). We conclude

Corollary: The group of symplectomorphisms, Sympc(R2n), of
R2n with compact support is not dense in C0-topology in the
group of volume preserving diffeomorphisms with compact support.
Let ϕ0 : R2n → R2n be a volume preserving diffeomorphism such
that ϕ0(B2n(2R)) ⊂ Z 2n(R). Then there is no sequence
(ϕk)k ⊂ Sympc(R2n) such that ϕk → ϕ0 uniformly (in C0).
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Non-Squeezing



Monotonicity
For the proof of Theorem 110 we will need the following

Proposition 111: Let u : (Σ, j)→ Cn be a holomorphic curve (in
Algebra: ”complex curve”), u(p) = 0 for p ∈ Σ and r > 0 such
that u−1(B2n(r)) ⊂ Σ is compact. Then

area(u(Σ)) ≥ πr2.
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Proof of Non-Squeezing
Embedd ι : (Z 2n(R), ωst) ↪→ (S2(R)× R2n−2, ω) =: (M, ω) with
ω = π∗

1ωR + π∗
2ωst , where ωR ∈ S2 area form with∫ 2

S
ωR = πR2.

Sufficient to show that ϕ : (B2n(r), ωst) ↪→ (M, ω) implies r ≤ R.
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