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Differential Forms on Rn

Definition 8: Let U ⊂ Rn be an open subset. A (differential)
k–form on U is a differentiable map α : U −→ Λk((Rn)∗), i.e. the
components αI

αp =
∑

I={1≤i1<i2<...<ik}
αI(p)ei1 ∧ ei2 ∧ ... ∧ eik

where {e1, ..., en} denotes the basis dual to the standard basis are
smooth functions (or Cm–functions etc.). We typically write αp
instead of α(p).
The space of such forms will be denoted by Ωk(U).



Differential Forms on Rn

Examples: (1) Let X : R→ Rn be a smooth vector field. Then
〈,X (.), .〉 defines a differential one form.
(2) Let f : Rn → R be a smooth function. Then its differential df
defines also a one form. We have

dpf =
n∑

i=1

∂f
∂xi

ei .

In particular, for the i–th coordinate function x i we see that
dx i = ei . Therefore and since the the ei are closely related to the
choice of coordinates, we will from now on write dx i instead of ei :

dpf =
n∑

i=1

∂f
∂xi

dx i .



Wedge-Product and Inner product

(1) Given a differential k–form α ∈ Ωk(U) and a differential
`–form β ∈ Ω`(U), the wedge-product α ∧ β ∈ Ωk+`(U) is defined
by pointwise applying the wedge-product:

(α ∧ β)p := αp ∧ βp.

Check that the Result is a differential form, i.e. smooth.
(2) Given a smooth vector field X on U and a differential form
α ∈ Ωk(U), then the inner product is also defined pointwise:

(Xyα)p := Xpyαp

giving rise to a differential (k − 1)–form (Check that!)



Pull-Back
(3) For a smooth map F : U → V , where V ⊂ Rm open and a
differential k–form α ∈ Ωk(V ), its pull-back, F ∗α is defined via

(F ∗α)p := (dpF )∗αF (p)

Once again, F ∗α ∈ Ωk(U), i.e. smooth (Check it!).

Examples: (1) g ∈ Ω0(V ) = C∞(V ): F ∗g = g ◦ F .
(2)F ∗(dx j) =

∑
i=1 n ∂F j

∂xi
dx i

(3) m = n : F ∗(dx1∧dx2∧...∧dxn) = det(dF )dx1∧dx2∧...∧dxn.

Proposition 9: The pull-back is a homomorphism of graded
algebras over R.

Proof: Exercise.
Notice that Ω∗(U),Ω∗(V ) are algebras over C∞(U),C∞(V ),

respectively, but even if U = V the pull-back is not a algebra
homomorphism w.r.t. that structure.



The Exterior Derivative

Definition 10: For

α =
∑

I={1≤i1<i2<...<ik}
αIdx i1 ∧ dx i2 ∧ ... ∧ dx ik ∈ Ωk(U)

its exterior derivative, dα ∈ Ωk+1(U) is defined via

dα =
∑

I={1≤i1<i2<...<ik}

n∑
j=1

∂αI
∂xj

dx j ∧ dx i1 ∧ dx i2 ∧ ... ∧ dx ik .

Notice that the summand vanishes for those I and j for which j ∈ I.

Examples: (1) If α ∈ Ωn(U), then dα = 0 by the remark at the
end.
(2) For α = x1dx2 ∈ Ω1(R2): dα = dx1 ∧ dx2.



The Exterior Derivative

(3) Let f ∈ C∞(U). Then

d(df ) = d
( n∑

i=1

∂f
∂xi

dx i
)

=
n∑

i=1

n∑
j=1

∂2f
∂xj∂xi

dx j ∧ dx i .

Now, dx i ∧ dx j = −dx j ∧ dx i hence all summands with i = j
vanish and the sum reduces to

=
∑

1≤i<j≤n
( ∂2f
∂xi∂xj

− ∂2f
∂xj∂xi

)dx i ∧ dx j = 0

due to Schwarz’ Lemma. �



The Exterior Derivative

Theorem 11: (Ω∗(U),∧, d) is a differential graded algebra
over R, meaning that (Ω∗(U),∧) is an algebra over R, d increases
the degree by 1, is R-linear and (1) d satisfies Leibniz’ rule:

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α ∈ Ωk(U), β ∈ Ω`(U)
(2) d2 = d ◦ d = 0.
(3) Moreover, if F : U → V is a smooth map as before the
pull-back defines a morphisms of differential graded algebras, i.e. in
particular for α ∈ Ωk(V ) we have

d(F ∗α) = F ∗(dα).



Proof of Theorem 11 (1):





Proof of Theorem 11 (2):





Proof of Theorem 11 (3):





Poincaré’s Lemma

Definition 12: A k–form α ∈ Ωk(U) is called closed or cocycle,
if dα = 0, it is called exact or coboundary if there exists
β ∈ Ωk−1(U) such that dβ = α. The set of boundaries, Bk(U),
and of cycles, Z k(U), are linear subspaces of the set of k–Forms,
i.e. Bk(U) ⊂ Z k(U) ⊂ Ωk(U). The quotient

Hk
DR(U) := Z k(U)/Bk(U).

is called de Rham cohomology of U.

Examples: (1) H0
DR(U) ∼= R if U is connected and freely generated.

(2) U ⊂ Rn: Hn
DR(U) = {0}.

Exercise.



Poincaré’s Lemma

Definition 13: A subset U ⊂ Rn is called starshaped if there
exists a point p0 ∈ U such that for all p ∈ U all points of the
segment between p0 and p are contained in U.

Theorem 14: Let U ⊂ Rn be an open, starshaped set. Then for
every k > 0, every closed k–Form α ∈ Ωk(U) is exact, i.e. there
exists a (k − 1)–form β ∈ Ωk−1(U) such that dβ = α. In
particular,

Hk
DR(U) = {0}

for every k > 0.



Chain Homotopies

Poincaré’s Lemma is a special case of a much more general
statement. Let f , g : U → V be two differentiable maps between
open subsets U ⊂ Rn, V ⊂ Rm, Φ : U × [0, 1]→ V differentiable
such that Φ(x , 0) = f (x) and Φ(x , 1) = g(x) for all x ∈ V .

Example: U ⊂ Rn open and starshaped w.r.t. p0. f := idU ,
g := cp0 ≡ p0 and Φ(x , t) = p0 + (1− t)(x − p0).

Theorem 15: There exists linear maps Pk : Ωk(V )→ Ωk−1(U)
such that for all k

P ◦ d + d ◦ P = f ∗ − g∗ : Ωk(V )→ Ωk(U).



Proof of Poincaré’s Lemma

Theorem 15 applied to example and noting c∗p0α = 0 for any
k–form α with k > 0 yields:

α ∈ Ωk(U) closed, i.e. dα = 0. Then

id∗α− c∗p0α = α = P(dα) + d(P(α)) = d(P(α))

so, β := P(α) ∈ Ωk−1(U) gives the desired (k − 1)–form.



Proof of Theorem 15



Proof of Theorem 15



Proof of Theorem 15


