Differential Geometry II Manifolds with Boundary

Klaus Mohnke

April 30, 2020

Manifolds with Boundary

Definition 19: An n-dimensional smooth **manifold with boundary** is a metric space M with an open covering $(U_{\iota})_{\iota \in I}$ together with homeomorphisms

$$\varphi_{\iota}: V_{\iota} \longrightarrow U_{\iota},$$

on open subsets $V_{\iota} \subset \mathbb{H}^n$: $\{x \in \mathbb{R}^n \mid x_n \geq 0\}$ of the upper half space with the induced topology from \mathbb{R}^n such that every transition map

$$(\varphi_{\kappa})^{-1}\circ\varphi_{\iota}:\varphi_{\iota}^{-1}(U_{\iota}\cap U_{\kappa})\to\varphi_{\kappa}^{-1}(U_{\iota}\cap U_{\kappa})$$

is a diffeomorphism between open subsets of \mathbb{H}^n . The family of triples $\{(U_\iota,\varphi_\iota,V_\iota)\}_{\iota\in I}$ is called an **atlas** of the manifold, the elements are called **charts**, U_ι , coordinate neighborhood, φ_ι a **parametrization** its inverse φ_ι^{-1} the **coordinate map**, its components (**local**) **coordinates** of M.

Manifolds with Boundary

Remarks: (1) Manifolds as defined last semester (i.e. all $V_{\iota} \subset \mathbb{R}^n$ are open subsets) are also manifolds with boundary. (2) [0,1) is an open subset of $\mathbb{H}^1 = [0,\infty)!$

Definition 19 (cont'd): The **boundary**, ∂M , of M is the set of all points which map to $\mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$ under the coordinate maps

$$\partial M := \{ \varphi_{\iota}(x) \mid \iota \in I, x \in V_{\iota} \cap (\mathbb{R}^{n-1} \times \{0\}) \}$$

Points in the complement $M \setminus \partial M$ will be referred to as **interior points** of M.

Examples:

 $\mathbb{R}^{n} \cong \check{H}^{n}$ (0), \mathbb{R}^n , \mathbb{H}^n are smooth manifolds with boundary: $\partial \mathbb{R}^n = \emptyset, \partial \mathbb{H}^n = \mathbb{R}^{n-1} \times \{0\}.$

(1) The closed ball $B^n(r) := \{x \in \mathbb{R}^n \mid ||x|| \le r\}$ is a smooth manifold with boundary: $\partial B^n = S^{n-1}(r) = \{x \in \mathbb{R}^n \mid ||x|| = r\}$.

manifold with boundary:
$$\partial B^{n} = S^{n-1}(r) = \{x \in \mathbb{R}^{n} \mid ||x|| = r\}.$$

$$U_{1} = \{(x_{1}, x_{2}) \in \mathcal{B}^{2}(1) \mid x_{2} < 0\} \quad \forall x_{1}$$

$$U_{2} = \{(x_{1}, x_{2}) \in \mathcal{B}^{2}(1) \mid x_{1} > 0\} \quad \forall x_{1} \mid y_{1} \mid y_{2} \rangle$$

$$U_{3} = \{(x_{1}, x_{2}) \in \mathcal{B}^{2}(1) \mid x_{2} > 0\} \quad \forall x_{1} \mid y_{1} \mid y_{2} \rangle$$

$$U_{4} = \{(x_{1}, x_{2}) \in \mathcal{B}^{2}(1) \mid x_{2} > 0\} \quad \forall x_{1} \mid y_{1} \mid y_{2} \mid y_{2}$$

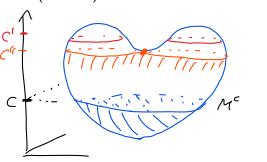
-> V1 = { (91,92) = 14 | 11911 < 1 } = V2 = V3 = V4 Vo = ((9, 92) | Y2+(42-1)2 < 1} < /th>

Manifolds with Boundary

Examples: (2) Let M be a manifold without boundary, $f:M\to\mathbb{R}$ a smooth function, $c\in\mathbb{R}$ a regular value, i.e. for all $p\in M$, f(p)=c we have $d_pf\neq 0$. Then the sublevel set

$$M^c := \{ p \in M \mid f(p) \le c \}$$

is a smooth manifold with boundary: $\partial M^c = \{ p \in M \mid f(p) = c \}$. (Exercise)



Differentiable maps between Manifolds with Boundary

Definition 20: Let M,N be smooth manifolds with boundary of possibly different dimension. Let $\{(U_{\iota},\varphi_{\iota},V_{\iota})\}_{\iota\in I}$ and $\{(\hat{U}_{\kappa},\hat{\varphi}_{\kappa},\hat{V}_{\kappa})\}_{\kappa\in\hat{I}}$ be the corresponding collection of coverings of M and N, together with the homeomorphisms to open subsets of \mathbb{H}^m and \mathbb{H}^n , respectively.

- $\begin{array}{ll} \mathbb{H}^m \text{ and } \mathbb{H}^n, \text{ respectively.} \\ \text{(1) A map } F: M \to N \text{ is } \textbf{differentiable} \text{ if for any } p \in M, \text{ any } \iota \in I \\ \text{and } \kappa \in \hat{I} \text{ the composition } \hat{\varphi}_\kappa^{-1} \circ F \circ \varphi_\iota : \varphi_\iota^{-1}(F^{-1}(\hat{U}_\kappa)) \to V_\kappa \text{ is} \\ \text{smooth as a map between open subsets of } \mathbb{H}^m \text{ and } \mathbb{H}^n. F \text{ is a} \\ \underline{\text{diffeomeorphism}} \text{ if it is bijective and together with its inverse } F^{-1} \\ \underline{\text{differentiable. In particular, the coordinate maps }} \varphi_\iota^{-1} : U_\iota \to \mathcal{M} \vee_{\iota} \subset \mathcal{H}^{\kappa} \\ \text{are diffeomorphisms.} \end{array}$
- (2) A chart (U, φ, V) of M is given by a diffeomorphism $\varphi: V \to U$ between open subsets $V \subset \mathbb{H}^m$ and $U \subset M$.

Submanifolds

Definition 21: Let M be a manifold with boundary of dimension m. A subset $N \subset M$ is a <u>submanifold</u> of M of dimension n if for each $p \in N$ there is a chart (U, φ, V) such that $\varphi|_{V \cap \{0_{m-n}\} \times \mathbb{R}^{n-1} \times [a,\infty)}$ is a homeomorphism onto $U \cap N$ for some $a \geq 0$. Such charts are sometimes called ironing charts ("Bügelkarten" in German).

Remark: (1) A submanifold is a smooth manifold with boundary. (Exercise)

(2) Note that $N \cap \partial M \subset \partial N$: the interior points of N are interior points of M.

Example: (1) $B^n \times \{0_{n-m}\} \subset \mathbb{R}^m$ is a submanifold. (2) $\widehat{B}^2((r,0),r) \subset \widehat{B}^2(0,2r)$ is not a submanifold.

Boundaries

Lemma 21: Let M be an m-dimensional smooth manifold with boundary.

- (1) A point $p \in M$ lies in the boundary of M if and only if there is a chart (U, φ, V) such that $x \in \varphi(V \cap \mathbb{R}^{n-1} \times \{0\})$ if and only if that condition holds for any chart containing p.
- (2) The boundary ∂M is a submanifold of M of dimension (m-1), a closed subset of M and has empty boundary: $\partial(\partial M) = \emptyset$.

Proof of Lemma 21:

(1) The existence of such a chart for $p \in \partial M$ is provided by the definition (namely for one of the charts from the atlas). Now assume that there exists a chart (U, φ, V) , $p \in U \subset M$ such that $p = \varphi(x_1, ..., x_{n-1}, 0)$. Let $(\hat{U}, \hat{\varphi}, \hat{V})$ be any other chart around p. The intersection $U \cap \hat{U}$ is also open and contains p. By taking its image under both coordinate maps, we may assume w.l.o.g. that $U = \hat{U}$. We need to show that for the transition function $F := \hat{\varphi}^{-1} \circ \varphi$, $F(x_1, ..., x_{n-1}, 0) \in \mathbb{R}^{n-1} \times \{0\}$. The *n*-th component of the inverse $G:=F^{-1},\ G^n:\hat{V}\to\mathbb{R}$ attains its absolute minimim, namely 0, at $y := F(x_1, ... x_{n-1}, 0)$. Now if $y_n > 0$ it would be an interior point of \mathbb{H}^n and therefore $d_y G^n = 0$. That would contradict, that $d_v G$ is invertible, since G was a

Finally, if the condition is satisfied for all charts, then in particular for charts from the atlas and we are back at the definition.

(2) Exercise.

diffeomorphism.

Tangent Vectors

As for manifolds, we define tangent vectors of manifolds with boundary and the differential of smooth funtions between them.

Definition 22: Let M be an m-dimensional manifold with boundary ∂M , $p \in M$.

(1) Let I, J be intervals containing 0. Two differentiable curves $\gamma: I \to M$, $\delta: J \to M$ with $\gamma(0) = \delta(0) = p$ are called aquivalent if for a chart (U, φ, V) around p we have 6-1. 8: I-) H" 6-08: J-) H"

$$(\varphi^{-1}\circ\gamma)'(0)=(\varphi^{-1}\circ\delta)'(0). \quad \varphi^{2}\circ\delta: \ \overline{J} \rightarrow \ \mathcal{H}$$

A tangent vector of M at p is an equivalence class of such curves. The set of tangent vectors, T_pM , the so-called **tangent space** of M at p.

Claim: The tangent space, T_pM , is a real vector space. (Exercise: see "Differential Geometry I") un Tolt = Rh + 7 FHh.

Tangent Vectors

- (2) Let $p \in \partial M$ be a boundary point, $v \in T_p M$ a tangent vector. v is called **tangent to** ∂M if there is a differentiable curve $\gamma: I \to \partial M$ representing v. v is **pointing inward/pointing outward** if v is not tangent to ∂M and represented by a curve $\gamma: [0, a) \to M/\gamma: (-a, 0] \to M$ for some a > 0.
- (3) Let $F:M\to N$ be a differentiable map between manifolds with boundary. Its differential at $p\in M$, $d_pF:T_pM\to T_pN$ is defined via

$$d_pF([\gamma]):=[F\circ\gamma],$$

i.e. the image of $[\gamma] \in T_pM$ represented by a differentiable curve $\gamma: I \to M$ is given by the equivalence class $[F \circ \gamma]$.

Claim: The differential is a linear map between vector spaces. (Exercise)

Vector fields,

Differential forms together with wedge-product, inner product, pull-back and exterior derivative are given analogously on manifolds with boundary.

Orientation

Definition 23: An **orientation** of an m-dimensional manifold with boundary, M, is a choice of orientation for the tangent spaces at all interior points such that for each $p \in M \setminus \partial M$ there exists a chart (U, φ, V) , $p \in U$ such that the coordinate vector fields $\{\frac{\partial}{\partial x_k}\}_{k=1}^n$ form an oriented basis of T_qM at each $q \in U$. If M admits an orientation it is called **orientable**, if an orientation is chosen M is called **oriented**.

Vy le are consided

Remark: (1) If M is oriented and $\{U_{\iota}, \varphi_{\iota}, V_{\iota}\}_{\iota \in I}$ an atlas, we can modify it by replacing $(U_{\iota}, \varphi_{\iota}, V_{\iota})$ by $(U_{\iota}, \varphi_{\iota} \circ \sigma, \sigma(V_{\iota}))$ with $\sigma : \mathbb{H}^{n} \to \mathbb{H}^{n}$ given by $\mathfrak{T}(x_{1}, x_{2}, ..., x_{m}) = (-x_{1}, x_{2}, ..., x_{m})$ if $m \geq 2$ to obtain an atlas, whose charts satisfy the condition of Defintion 23, called an **oriented atlas**.

(2) 1—dimensional manifolds are always orientable. If such a manifold is oriented one can distinguish between boundary points for which charts induce oriented bases and those whose charts induces bases with the opposite orientation.

Orientation

Lemma 24: Let M be an oriented manifold with boundary of dimension $m \geq 2$. Then the tangent spaces at all boundary points can be oriented so that there exists a chart around each which is oriented in the sense of Definition 23. In particular, the boundary can be oriented so that for any $p \in \partial M$ an oriented basis of $T_p(\partial M)$ extended by an inward pointing tangent vector gives an oriented basis of T_pM .