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Orientation: Correction

Lemma 24: Let M be an oriented manifold with boundary of
dimension m > 2. Then the tangent spaces at all boundary points
can be oriented so that there exists a chart around each which is
oriented in the sense of Definition 23.

In particular, the boundary can be oriented so that for any p € OM
an oriented basis of T,(OM) extended by an outward pointing
tangent vector put in the first position gives an oriented basis of
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Measurable subsets

Definition 25: A metric space is called separable if it contains a
countable dense subset.

From now on we assume that the manifolds we consider are
separable metric spaces without always mentioning it.

Definition 26: Let M be an n—dimensional separable manifold
with boundary.

(1) A subset A C M is (Lebesgue) measurable if for every chart
(U, i, V) of M, ¢71(A) C V is a Lebesgue measurable subset of
R".

(2) A subset N C M is a zero set if for every chart (U, ¢, V) of
M, o~1(A) C V is a zero set of R”.



Signed Measures

Remark: The separability of M implies, that there is a countable
base of its topology. Then the measurable/null sets A C M are
exactly countable unions of Lebesgue measurable/null sets of
coordinate neighbourhoods (identified with open subsets of R").
Therefore, these locally defined sets generate the o—algebras.

Recall

Definition 27: A finite signed measure ;. on a manifold M
assignes to each measurable set a real number and is o—additive:
i.e. for each countable family {Ax}ken of pairwise disjoint
measurable subsets

1(URZ1Ax) = Z p(Ak)-



Integrals of Differential Forms

Proposition 28: Let a € Q"(M) be a differential n—forms on the
n—dimensional, oriented manifold with boundary M with compact
support: the closure in M

{peMa, 20} C M

is compact.
There exists a unique signed measure 1 on M which satisfies the
following: Let (U, ¢, V) be an oriented chart and let f : U — R be
given by

a = fdx! A dxB.. A dx".

Let A C U be measurable. Then
u(A) ;:/ (F 0 p)dA"
¢ 1(A)

defines a unique signed measure on M. By A" we denote the
Lebesgue measure on R".



Proof of Proposition 28:

(1) First notice that f o ¢ is continuous with compact support,
hence the integral is defined and finite.

(2) We need to show that for a measurable set A C U for a
coordinate chart (U, ¢, V) the right hand side in the definition
remains unchanged if we use different oriented coordinates

(U, ¢, V). Now F = y-Loa
aly = fdx A ... A bR = (f o F)det(dF)d&: A ... A dX".
Therefore since det(dF) > 0 by the transformation rule for

integrals (involving the factor |det(dF)|!) we see that u(A) is
independent of the choice of oriented coordinates.



Proof of Proposition 28:

(3) Now it suffices to show, that for a coordinate chart (U, ¢, V)
and a measurable set A C U with

for measurable sets By C Uy for coordinate charts (Uxk, vk, Vi) we
have

WA =3 u(Be).
k=1

But this is true since the Lebesgue integral

[ =3 [ faxr
A k=1" Bk

is o—additive. [



Definition 29: Let M be an oriented manifold with boundary,
dimM = n, a € Q"(M) a differential n-form with compact
support, i the signed measure defined by it, A C M be a
measurable set. Then

/Aa = p(A).

In particular,

/Ma = pu(M).

Remark: Notice, that change of orientation changes the overall
sign of the signed measure p: if —M denotes the same manifold
with the opposite orientation, then

fur=fo



Stokes' Theorem

Theorem 30: Let M be an oriented n-dimensional manifold with
boundary, o € Q""1(M) a differential (n — 1)-manifold with
compact support. Then IThe

o fyo
M _Q_M

where « on the right hand side denotes the pull-back of o under
the inclusion OM < M and OM is equipped with the induced
orientation of Lemma 24.



Proof of Stokes' Theorem

(1) M =H", R > 0 such that

supp(a) C [-R, R]"™* x [0, R].—}1 T )

Let )
o= Z ardxE A . AdxK A LA dX.

k=1 ’

where dxk means, that dx, is left out. We have
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Proof of Stokes' Theorem
((A—_,)»(-\rw’m_ﬂ.

Notice that f\; // /// / i

{ €n, €
"(u

agrees with the standard orientation of R"*# if n is even and
disagrees if n is odd hence

/ o= (—1)"/ an(., 0)dA™ 1,
OHn Rn—1 -
Fork=1,..,n—1

aOék Fub/nl 8O‘k -1
—Sdxt AL A dx" dx ) d\"
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Proof of Stokes' Theorem

hence

FUE"’” _ n 1/ / (904,, nd)\n 1
Rn—1 8)(”

Part:/nt (_1)n—1 /Rnil(an_(; R) — a;\(,o)) AAI\—!
= (—1)”/Rn_1 an(-,0))dA™".



Proof of Stokes' Theorem
(2) pe M, (Up, pp, Vp) chart around p, x, := (pgl(p)é‘//'/h
rp > 0 such that B(xp,2r,) C V. '

supp(a) C U ©p(B(xp, 1p))-
pesupp(a)

supp(«) compact: there are py, ..., py € supp(«) such that

N
supp(@) C U @, (Bl ). )
rolu) k=1
Let f: R — [0,1] smooth, fljg1) =1, fljp,0c) = 0. (Exercise:
Prove existence!)



Proof of Stokes’ Theorem
Define smooth X\ : M — [0, 1]

Su(@) = F(lok (@)l /7w)

for g € Uy, and 0 otherwise. We set Ay := S\k/ Z’-V 1 Aj. Then
o Tepp (<)

ZA‘ E

supp(«

(Ay<) € 7(M) Ay mhy Uest)=0 if
gref Jupp (£



Proof of Stokes' Theorem
(3) Notice

N
da = Z d(Aka).
k=1

supp(Akar) C Up,. If Up, N OM = () then by partial integration and
compactness of support we obtain

/M d(Aea) =0 = /aM Ak M xS ()= ;/
Else e



Proof of Stokes'Theorem
Summing over k gives the result:
/M do = /Md<ki::1)\ka>
— kzi /M d(\ea) )
-5 e = J(Z )

24 =1

= . O
oM

Remark: The collection of functions {\x} is called a partition of
unit.
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