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Orientation: Correction

Lemma 24: Let M be an oriented manifold with boundary of
dimension m ≥ 2. Then the tangent spaces at all boundary points
can be oriented so that there exists a chart around each which is
oriented in the sense of Definition 23.

In particular, the boundary can be oriented so that for any p ∈ ∂M
an oriented basis of Tp(∂M) extended by an outward pointing
tangent vector put in the first position gives an oriented basis of
TpM.



Measurable subsets

Definition 25: A metric space is called separable if it contains a
countable dense subset.

From now on we assume that the manifolds we consider are
separable metric spaces without always mentioning it.

Definition 26: Let M be an n–dimensional separable manifold
with boundary.
(1) A subset A ⊂ M is (Lebesgue) measurable if for every chart
(U, ϕ,V ) of M, ϕ−1(A) ⊂ V is a Lebesgue measurable subset of
Rn.
(2) A subset N ⊂ M is a zero set if for every chart (U, ϕ,V ) of
M, ϕ−1(A) ⊂ V is a zero set of Rn.



Signed Measures

Remark: The separability of M implies, that there is a countable
base of its topology. Then the measurable/null sets A ⊂ M are
exactly countable unions of Lebesgue measurable/null sets of
coordinate neighbourhoods (identified with open subsets of Rn).
Therefore, these locally defined sets generate the σ–algebras.

Recall

Definition 27: A finite signed measure µ on a manifold M
assignes to each measurable set a real number and is σ–additive:
i.e. for each countable family {Ak}k∈N of pairwise disjoint
measurable subsets

µ(∪∞k=1Ak) =
∞∑

k=1
µ(Ak).



Integrals of Differential Forms
Proposition 28: Let α ∈ Ωn(M) be a differential n–forms on the
n–dimensional, oriented manifold with boundary M with compact
support: the closure in M

{p ∈ M | αp 6= 0} ⊂ M

is compact.
There exists a unique signed measure µ on M which satisfies the
following: Let (U, ϕ,V ) be an oriented chart and let f : U → R be
given by

α = fdx1 ∧ dx1... ∧ dxn.

Let A ⊂ U be measurable. Then

µ(A) :=
∫
ϕ−1(A)

(f ◦ ϕ)dλn

defines a unique signed measure on M. By λn we denote the
Lebesgue measure on Rn.



Proof of Proposition 28:

(1) First notice that f ◦ ϕ is continuous with compact support,
hence the integral is defined and finite.
(2) We need to show that for a measurable set A ⊂ U for a
coordinate chart (U, ϕ,V ) the right hand side in the definition
remains unchanged if we use different oriented coordinates
(U, ϕ̂, V̂ ). Now

α|U = fdx1 ∧ ... ∧ dx2 = (f ◦ F ) det(dF )dx̂1 ∧ ... ∧ dx̂n.

Therefore since det(dF ) > 0 by the transformation rule for
integrals (involving the factor | det(dF )|!) we see that µ(A) is
independent of the choice of oriented coordinates.



Proof of Proposition 28:

(3) Now it suffices to show, that for a coordinate chart (U, ϕ,V )
and a measurable set A ⊂ U with

A = ∪∞k=1Bk

for measurable sets Bk ⊂ Uk for coordinate charts (Uk , ϕk ,Vk) we
have

µ(A) =
∞∑

k=1
µ(Bk).

But this is true since the Lebesgue integral∫
fdλn =

∞∑
k=1

∫
Bk

fdλn

is σ–additive. �



Definition 29: Let M be an oriented manifold with boundary,
dim M = n, α ∈ Ωn(M) a differential n-form with compact
support, µ the signed measure defined by it, A ⊂ M be a
measurable set. Then ∫

A
α := µ(A).

In particular, ∫
M
α = µ(M).

Remark: Notice, that change of orientation changes the overall
sign of the signed measure µ: if −M denotes the same manifold
with the opposite orientation, then∫

−M
α = −

∫
M
α.



Stokes’ Theorem

Theorem 30: Let M be an oriented n-dimensional manifold with
boundary, α ∈ Ωn−1(M) a differential (n − 1)–manifold with
compact support. Then ∫

M
dα =

∫
∂M

α,

where α on the right hand side denotes the pull-back of α under
the inclusion ∂M ↪→ M and ∂M is equipped with the induced
orientation of Lemma 24.



Proof of Stokes’ Theorem

(1) M = Hn, R > 0 such that

supp(α) ⊂ [−R,R]n−1 × [0,R].

Let
α =

n∑
k=1

αkdx1 ∧ ... ∧ d̂xk ∧ ... ∧ dxn.

where d̂xk means, that dxk is left out. We have

dα =
( n∑

k=1
(−1)k−1∂αk

∂xk

)
dx1 ∧ ... ∧ dxn

and
ι∂Hnα = αndx1 ∧ ... ∧ dxn−1.



Proof of Stokes’ Theorem

Notice that
{−en, e1, ..., en−1}

agrees with the standard orientation of Rn−1 if n is even and
disagrees if n is odd hence∫

∂Hn
α = (−1)n

∫
Rn−1

αn(., 0)dλn−1,

For k = 1, ..., n − 1∫
Hn

∂αk
∂xk

dx1 ∧ ... ∧ dxn Fubini=
∫
Hn−1

( ∫ R

−R

∂αk
∂xk

dxk
)
dλn−1

part.Int.=
∫
Hn−1

(αk(.,R, .)− αk(.,−R, .))dλn−1

= 0,



Proof of Stokes’ Theorem

hence ∫
Hn

dα =
∫
Hn

(−1)n−1∂αn
∂xn

dx1 ∧ ... ∧ dxn

Fubini= (−1)n−1
∫
Rn−1

∫ R

0

∂αn
∂xn

dxndλn−1

part.Int.= (−1)n−1
∫
Rn−1

(αn(.,R)− αk(., 0))

= (−1)n
∫
Rn−1

αn(., 0))dλn−1.



Proof of Stokes’ Theorem
(2) p ∈ M, (Up, ϕp,Vp) chart around p, xp := ϕ−1

p (p).
rp > 0 such that B(xp, 2rp) ⊂ Vp.

supp(α) ⊂
⋃

p∈supp(α)
ϕp(B(xp, rp)).

supp(α) compact: there are p1, ..., pN ∈ supp(α) such that

supp(α) ⊂
N⋃

k=1
ϕpk (B(xpk , rpk )).

Let f : R→ [0, 1] smooth, f |[0,1] ≡ 1, f |[2,∞) ≡ 0. (Exercise:
Prove existence!)



Proof of Stokes’ Theorem
Define smooth λ̃k : M → [0, 1]

λ̃k(q) := f (‖ϕ−1
k (q)‖/rpk )

for q ∈ Upk and 0 otherwise. We set λk := λ̃k
/∑N

j=1 λ̃j . Then

N∑
k=1

λk
∣∣∣supp(α)

≡ 1.



Proof of Stokes’ Theorem
(3) Notice

dα =
N∑

k=1
d(λkα).

supp(λkα) ⊂ Upk . If Upk ∩ ∂M = ∅ then by partial integration and
compactness of support we obtain∫

M
d(λkα) = 0 =

∫
∂M

λkα.

Else ∫
M

d(λkα) =
∫

Vpk

ϕ∗k(d(λkα))

=
∫
Hn

d(ϕ∗k(λkα)

=
∫
Rn−1×{0}

ϕ∗k(λkα)

=
∫
∂M

λkα.



Proof of Stokes’Theorem

Summing over k gives the result:

∫
M

dα =
∫

M
d
( N∑

k=1
λkα

)

=
N∑

k=1

∫
M

d(λkα)

=
N∑

k=1

∫
∂M

λkα

=
∫
∂M

α. �

Remark: The collection of functions {λk} is called a partition of
unit.










