Differential Geometry II
 Applications of Stokes'Theorem

Klaus Mohnke

May 7, 2020
$4 \square>4$ 品 $\quad 4 \equiv 1$ 三

Brouwer's Fixed Point Theorem

Theorem 31: Every continuous map $F: B^{n} \rightarrow B^{n}$ from the unit ball B^{n} into itself admits a fixed point.

Brouwer's Fixed Point Theorem

Theorem 31: Every continuous map $F: B^{n} \rightarrow B^{n}$ from the unit ball B^{n} into itself admits a fixed point.

We will make use of
Proposition 32: There exists no differentiable map
$f: B^{n} \rightarrow \partial B^{n}=S^{n-1}$ with

$$
\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}
$$

Brouwer's Fixed Point Theorem

Theorem 31: Every continuous map $F: B^{n} \rightarrow B^{n}$ from the unit ball B^{n} into itself admits a fixed point.

We will make use of
Proposition 32: There exists no differentiable map
$f: B^{n} \rightarrow \partial B^{n}=S^{n-1}$ with

$$
\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}
$$

Proof: Assume there is such a function f. Denote by

$$
\mathbf{n}: S^{n-1} \rightarrow \mathbb{R}^{n}
$$

the outer normal given by $\mathbf{n}(x)=x$.

Brouwer's Fixed Point Theorem

Theorem 31: Every continuous map $F: B^{n} \rightarrow B^{n}$ from the unit ball B^{n} into itself admits a fixed point.

We will make use of
Proposition 32: There exists no differentiable map
$f: B^{n} \rightarrow \partial B^{n}=S^{n-1}$ with

$$
\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}
$$

Proof: Assume there is such a function f. Denote by

$$
\mathbf{n}: S^{n-1} \rightarrow \mathbb{R}^{n}
$$

the outer normal given by $\mathbf{n}(x)=x$. Then the $(n-1)$-form on S^{n-1}

$$
\alpha:=\mathbf{n}\lrcorner\left(d x^{1} \wedge \ldots \wedge d x^{n}\right)
$$

defines a positive mass on S^{n-1}.
measure

Brouwer's Fixed Point Theorem

Theorem 31: Every continuous map $F: B^{n} \rightarrow B^{n}$ from the unit ball B^{n} into itself admits a fixed point.

We will make use of
Proposition 32: There exists no differentiable map
$f: B^{n} \rightarrow \partial B^{n}=S^{n-1}$ with

$$
\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}
$$

Proof: Assume there is such a function f. Denote by

$$
\mathbf{n}: S^{n-1} \rightarrow \mathbb{R}^{n}
$$

the outer normal given by $\mathbf{n}(x)=x$. Then the $(n-1)$-form on S^{n-1}

$$
\alpha:=\mathbf{n}\lrcorner\left(d x^{1} \wedge \ldots \wedge d x^{n}\right)
$$

defines a positive mass on S^{n-1}. Hence $d \alpha=0$ and
leaver

$$
\int_{S^{n-1}} \alpha>0
$$

Proof of Brouwer's Fixed Point Theorem

But by Stokes' Theorem and $\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}$

$$
0=\int_{B^{n}} d\left(f^{*} \alpha\right)=\int_{S^{n-1}} f^{*} \alpha=\int_{S^{n-1}} \alpha>0
$$

and we arrive at a contradiction. $\quad d\left(f^{\neq \prime} \alpha\right)=f^{*}(\underset{=0}{d \alpha)}=0$

Proof of Brouwer's Fixed Point Theorem

But by Stokes' Theorem and $\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}$

$$
0=\int_{B^{n}} d\left(f^{*} \alpha\right)=\int_{S^{n-1}} f^{*} \alpha=\int_{S^{n-1}} \alpha>0
$$

and we arrive at a contradiction.

Proof of Theorem 31: (1) Assume there is a smooth function $F: B^{n} \rightarrow B^{n}$ without fixed points.

Proof of Brouwer's Fixed Point Theorem

But by Stokes' Theorem and $\left.f\right|_{S^{n-1}}=i d_{S^{n-1}}$

$$
0=\int_{B^{n}} d\left(f^{*} \alpha\right)=\int_{S^{n-1}} f^{*} \alpha=\int_{S^{n-1}} \alpha>0
$$

and we arrive at a contradiction.
Proof of Theorem 31: (1) Assume there is a smooth function $F: B^{n} \rightarrow B^{n}$ without fixed points.
Define $f: B^{n} \rightarrow S^{n-1}$ which assigns to $x \in B^{n}$ the intersection of the well-defined line through x and $F(x)$, such that $x \in[f(x), F(x)]$. Then

$$
\left.f\right|_{S^{n-1}}=\mathrm{id}_{S^{n-1}} .
$$

Exercise: f is smooth.
This contradicts Proposition 32.

Proof of Brouwer's Fixed Point Theorem

(2) Assume there is a continuous function $F: B^{n} \rightarrow B^{n}$.

Approximate F by smooth functions $F_{n}: B^{n} \rightarrow B^{n}$ which converge uniformly to F (How?).

Proof of Brouwer's Fixed Point Theorem

(2) Assume there is a continuous function $F: B^{n} \rightarrow B^{n}$.

Approximate F by smooth functions $F_{n}: B^{n} \rightarrow B^{n}$ which converge uniformly to F (How?).

Let $x_{n} \in B$ be fixed points: $F_{n}\left(x_{n}\right)=x_{n}$.

Proof of Brouwer's Fixed Point Theorem

(2) Assume there is a continuous function $F: B^{n} \rightarrow B^{n}$.

Approximate F by smooth functions $F_{n}: B^{n} \rightarrow B^{n}$ which converge uniformly to F (How?).

Let $x_{n} \in B$ be fixed points: $F_{n}\left(x_{n}\right)=x_{n} . \longleftrightarrow$
B compact: subsequence converges in $B^{n}: x_{n} \rightarrow x_{*} \in B^{n}$. Then

$$
F\left(x_{*}\right)=x_{*} . \quad \square
$$

(Exercise).

Riemannian Metrics

Recall: A Riemannian metric on a smooth manifold with boundary is a smooth family $\left\{g_{p}\right\}_{p \in M}$ of symmetric positive definite bilinear forms on $T_{p} M .\left\{\frac{\partial}{\partial x_{k}}\right\} \sim\left(g_{i j}\right): V \rightarrow M(u, \mathbb{R})$
Proposition 33: Any separable smooth manifold with boundary admits a Riemannian metric.

For this we will discuss the partition of unity.

Partition of Unity

Lemma 34: Let M be a smooth manifold with boundary. Let $\left\{U_{\iota}\right\}_{\iota \in I}$ be an open covering of M. There exist a countable family $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ of non-negative smooth functions with compact support, such that

Partition of Unity

Lemma 34: Let M be a smooth manifold with boundary. Let $\left\{U_{\iota}\right\}_{\iota \in I}$ be an open covering of M. There exist a countable family $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ of non-negative smooth functions with compact support, such that
(i) refinement condition: For any $k \in \mathbb{N}$ there is a $\iota \in I$ such that $\operatorname{supp}\left(\lambda_{k}\right) \subset U_{\iota}$

Partition of Unity

Lemma 34: Let M be a smooth manifold with boundary. Let $\left\{U_{\iota}\right\}_{\iota \in I}$ be an open covering of M. There exist a countable family $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ of non-negative smooth functions with compact support, such that
(i) refinement condition: For any $k \in \mathbb{N}$ there is a $\iota \in I$ such that $\operatorname{supp}\left(\lambda_{k}\right) \subset U \iota$
(ii) locally finiteness: for each $p \in M$ there is $U \subset M$ open $p \in U$ such that

$$
\sharp\left\{k \in \mathbb{N} \mid \operatorname{supp}\left(\lambda_{k}\right) \cap U \neq \emptyset\right\}<\infty .
$$

Partition of Unity

Lemma 34: Let M be a smooth manifold with boundary. Let $\left\{U_{\iota}\right\}_{\iota \in I}$ be an open covering of M. There exist a countable family $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ of non-negative smooth functions with compact support, such that
(i) refinement condition: For any $k \in \mathbb{N}$ there is a $\iota \in I$ such that $\operatorname{supp}\left(\lambda_{k}\right) \subset U \iota$
(ii) locally finiteness: for each $p \in M$ there is $U \subset M$ open $p \in U$ such that

$$
\sharp\left\{k \in \mathbb{N} \mid \operatorname{supp}\left(\lambda_{k}\right) \cap U \neq \emptyset\right\}<\infty .
$$

(iii) partition of unity:

$$
\sum_{k=1}^{\infty} \lambda_{k} \equiv 1
$$

We will discuss the proof later, possibly.

Construction of Riemannian Metric

Proof of Proposition 33: Let $\left\{\left(U_{\iota}, \varphi_{\iota}, V_{\iota}\right)\right\}_{\iota \in I}$ be a smooth atlas of $M, \operatorname{dim} M=n$ and let $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a partition of unity w.r.t. covering. Let $\iota_{k} \in I$, such that $\operatorname{supp}\left(\lambda_{k}\right) \subset U_{\iota_{k}}$.

Construction of Riemannian Metric

Proof of Proposition 33: Let $\left\{\left(U_{\iota}, \varphi_{\iota}, V_{\iota}\right)\right\}_{\iota \in I}$ be a smooth atlas of $M, \operatorname{dim} M=n$ and let $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a partition of unity w.r.t. covering. Let $\iota_{k} \in I$, such that $\operatorname{supp}\left(\lambda_{k}\right) \subset U_{\iota_{k}}$.

Define for any $p \in M$

$$
g_{p}:=\sum_{k=1}^{\infty} \lambda_{k}(p)\left(\varphi_{\iota_{k}}^{-1}\right)_{p}^{*}\langle., .\rangle
$$

where $\langle.,$,$\rangle denotes the standard scalar product in \mathbb{R}^{n}$.

Construction of Riemannian Metric

Proof of Proposition 33: Let $\left\{\left(U_{\iota}, \varphi_{\iota}, V_{\iota}\right)\right\}_{\iota \in I}$ be a smooth atlas of $M, \operatorname{dim} M=n$ and let $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a partition of unity
w.r.t. covering. Let $\iota_{k} \in I$, such that $\operatorname{supp}\left(\lambda_{k}\right) \subset U_{\iota_{k}}$.

Define

$$
g_{p}:=\sum_{k=1}^{\infty} \underbrace{\widetilde{\lambda_{k}(p)}\left(\varphi_{\iota_{k}}^{-1}\right)_{p}^{*}\langle., .)}
$$

where $\langle.$,$\rangle denotes the standard scalar product in \mathbb{R}^{n}$.
$\left(\varphi_{\iota_{k}}^{-1}\right)^{*}\langle.,$.$\rangle is symmetric positive definite.$
g_{p} is is finite convex linear combination of such, hence symmetric and positive definite. \square

The Volume Form

Let M be an oriented n-dimensional manifold equipped with a Riemannian metric g.
Definition 35: The volume form of (M, g) is the n-form, $d M$, which is given at any $p \in M$ by the volume form of the oriented euclidean vector space

$$
d M_{p}:=d\left(T_{p} M, g_{p}\right) . \quad \text { Se lecture } 1
$$

$d M$ i ut (in general) the differential of a ($1,-1$-form $m M: d M \neq d(M)$

The Volume Form

Let M be an oriented n-dimensional manifold equipped with a Riemannian metric g.
Definition 35: The volume form of (M, g) is the n-form, $d M$, which is given at any $p \in M$ by the volume form of the oriented euclidean vector space

$$
d M_{p}:=d\left(T_{p} M, g_{p}\right)
$$

Let (U, φ, V) be an oriented chart. Then
(Exercise).

$$
\varphi^{*}(d M)=\sqrt{>0} \sqrt{\operatorname{det}(g)} d x^{1} \wedge \ldots \wedge d x^{n} .
$$

The Volume Form

In particular $d M$ defines a positive measure. We define the volume of (M, g) as

$$
\operatorname{vol}(M, g):=\int_{M} d M \in(0, \infty]
$$

The Volume Form

In particular $d M$ defines a positive measure. We define the volume of (M, g) as

$$
\operatorname{vol}(M, g):=\int_{M} d M \in(0, \infty]
$$

Corollary: Assume $\partial M=\emptyset$, Then the de Rham chomology class of $d M$ is non-zero and compact, and oriented

$$
[d M] \neq 0 \in H_{D R}^{n}(M)
$$

Proof: Assur $d M=d \alpha$ for same $\alpha \in \Omega^{G-1}(M)$

$$
0<\int_{M} d M=\int_{M} d \alpha \underset{\text { stolen }}{\frac{i}{i}} \int_{\partial M} \alpha=0
$$

The Volume Form

In particular $d M$ defines a positive measure. We define the volume of (M, g) as

$$
\operatorname{vol}(M, g):=\int_{M} d M \in(0, \infty]
$$

Corollary: Assume $\partial M=\emptyset$. Then the de Rham chomology class of $d M$ is non-zero

$$
[d M] \neq 0 \in H_{D R}^{n}(M)
$$

If \mathbf{n} is the outward normal vector field of M along ∂M, then

$$
\begin{aligned}
& h_{p} \perp T_{p}(\partial M) \\
& Y\left(h_{p} \|_{g_{p}}=1\right. \\
& \text { (Exercise). }
\end{aligned}
$$

$$
d(\partial M)=n\lrcorner d M
$$

Obstruction for Retract to the Boundary

Theorem 36: Let M be a compact, oriented manifold with boundary. Then there is no smooth map $\varphi: M \rightarrow \partial M$ which restricts to the identity on the boundary.

Obstruction for Retract to the Boundary

Theorem 36: Let M be a compact, oriented manifold with boundary. Then there is no smooth map $\varphi: M \rightarrow \partial M$ which restricts to the identity on the boundary.

Proof: Let g be a Riemannian metric on ∂M. We thus obtain its volume form $d(\partial M) \in \Omega^{n-1}(\partial M)$ which is closed: $d(d \partial M)=0$. Assume there is such a map $\varphi: M \rightarrow \partial M$.

Obstruction for Retract to the Boundary

Theorem 36: Let M be a compact, oriented manifold with boundary. Then there is no smooth map $\varphi: M \rightarrow \partial M$ which restricts to the identity on the boundary.

Proof: Let g be a Riemannian metric on ∂M. We thus obtain its volume form $d(\partial M) \in \Omega^{n-1}(\partial M)$ which is closed: $d(d \partial M)=0$. Assume there is such a map $\varphi: M \rightarrow \partial M$. Then

$$
\begin{aligned}
\int_{\partial M} d(\partial M) & =\int_{\partial M} \varphi^{*} d(\partial M) \quad \varphi \mid \partial M=i d \partial M \\
& =\int_{M} \underline{d}\left(\varphi^{*}(d(\partial M))\right. \\
& =\int_{M} \varphi^{*} d(d(\partial M))=0 .
\end{aligned}
$$

Now the volume form defines a positive measure on ∂M and hence the first integral is positive. Contradiction. \square

Codifferential and Laplacian

Let (M, g) be an oriented Riemannian manifolds. The Hodge-*-operator

$$
*: \Omega^{k}(M) \longrightarrow \Omega^{n-k}(M)
$$

is defined by the Hodge-*-operator on each $\Lambda^{*}\left(\underline{T_{p} M}\right)$.

Codifferential and Laplacian

Let (M, g) be an oriented Riemannian manifolds. The Hodge-*-operator

$$
*: \Omega^{k}(M) \longrightarrow \Omega^{n-k}(M)
$$

is defined by the Hodge-*-operator on each $\Lambda^{*}\left(T_{p} M\right)$.
The codifferential δ is the differential operator

$$
\begin{aligned}
& \delta: \Omega^{k}(M) \longrightarrow \Omega^{k-1}(M) \\
& \delta:=(-1)^{n(k-1)-1} * d *
\end{aligned}
$$

Codifferential and Laplacian

Let (M, g) be an oriented Riemannian manifolds. The Hodge-*-operator

$$
*: \Omega^{k}(M) \longrightarrow \Omega^{n-k}(M)
$$

is defined by the Hodge-*-operator on each $\Lambda^{*}\left(T_{p} M\right)$.
The codifferential δ is the differential operator

$$
\begin{aligned}
& \delta: \Omega^{k}(M) \longrightarrow \Omega^{k-1}(M) \\
& \delta:=(-1)^{n(k-1)-1} * d *
\end{aligned}
$$

The Laplaceoperator is the differentiakl operator

$$
\begin{aligned}
& \Delta: \Omega^{k}(M) \longrightarrow \Omega^{k}(M) \\
& \Delta:=\underline{d} \delta+\delta d
\end{aligned}
$$

with $\delta=0$ on $\Omega^{0}(M)$ and $d=0$ on $\Omega^{n}(M)$.

The Laplace-Beltrami Operator

$g=\left(g_{i j}\right)$ Riemann tensor in oriented coordinates, $g^{i j}$ its inverse, f smooth function. In coordinates we obtain $\Delta f=\delta(d f)$

$$
\Delta_{g} f=-\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sqrt{\operatorname{det} g} g^{i j} \frac{\partial f}{\partial x_{j}}\right)
$$

The Laplace-Beltrami Operator

$g=g_{i j}$ Riemann tensor in oriented coordinates, $g^{i j}$ its inverse, f smooth function. In coordinates we obtain

$$
\Delta_{g} f=-\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sqrt{\operatorname{det} g} g^{i j} \frac{\partial f}{\partial x_{j}}\right)
$$

$$
\int\langle\Delta \alpha, \alpha\rangle d \mu \geqslant 0
$$

$$
\begin{aligned}
& M=\mathbb{R}^{n}, g=\langle\ldots\rangle \\
& \Delta\left(\sum_{l=\left\{1 \leq i_{1}<\ldots<i_{k} \leq n\right\}} \alpha_{l} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}\right) \\
& =\sum_{l=\left\{1 \leq i_{1}<\ldots<i_{k} \leq n\right\}}\left(\Delta \alpha_{l}\right) d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}
\end{aligned}
$$

where $\Delta \alpha_{l}$ is the classical Laplace-operator on functions on \mathbb{R}^{n}.

$$
\Delta \alpha_{I}=-\sum_{k=1}^{n} \frac{\partial^{2} \alpha I}{\partial x_{k}} \longleftrightarrow
$$

Gauss' Divergence Theorem

Definition 37: Let X be a smooth vector field on an oriented Riemannian manifold (M, g). The divergence of X is the smooth real function $\operatorname{div} X$ defined by

$$
\operatorname{div} X:=\delta \underbrace{\delta(g(X, .))}_{\in}
$$

Gauss' Divergence Theorem

Definition 37: Let X be a smooth vector field on an oriented Riemannian manifold (M, g). The divergence of X is the smooth real function $\operatorname{div} X$ defined by

$$
\operatorname{div} X:=\delta(g(X, .)
$$

Theorem 38: With the notation above

$$
\int_{M} \operatorname{div} X d M=\stackrel{?}{-} \int_{\partial M} g(X, \mathbf{n}) d(\partial M)
$$

where \mathbf{n} is the outward normal along ∂M.

Gauss' Divergence Theorem $(-1)^{n(1-1)-1} * *{ }^{n} \Omega^{n}(m)$
Proof: We have
Proof: We have

$$
\left.\begin{array}{l}
\text { root: We have } \\
\operatorname{div} X d M=* \delta(\underbrace{g(X, .)}_{\in \Omega^{\prime}(M)})=*(-* \underbrace{d(* g(X, .))}_{\in \Omega^{n}(M)})
\end{array}\right)-d(* g(X, .)) \text {. }
$$

Gauss' Divergence Theorem

Proof: We have

$$
\operatorname{div} X d M=* \delta(g(X, .))=*(-* d(* g(X, .)))=-d(* g(X, .))
$$

Applying Stokes' Theorem we get

$$
\left.\int_{M} \operatorname{div} X d M=-\int_{M} d / * g(X, .)\right) \stackrel{\unrhd}{=}-\int_{\partial M} * g(X, .)
$$

Gauss' Divergence Theorem

Proof: We have

$$
\operatorname{div} X d M=* \delta(g(X, .))=*(-* d(* g(X, .)))=-d(* g(X, .))
$$

Applying Stokes' Theorem we get

$$
\int_{M} \operatorname{div} X d M=-\int_{M} d * g(X, .)=-\int_{\partial M} * g(X, .)
$$

It suffices to show

$$
\iota_{\partial M}^{*}(* g(X, .))=g(X, \mathbf{n}) d(\partial M) .
$$

Gauss' Divergence Theorem

Proof: We have

$$
\operatorname{div} X d M=* \delta(g(X, .))=*(-* d(* g(X, .)))=-d(* g(X, .))
$$

Applying Stokes' Theorem we get

$$
\int_{M} \operatorname{div} X d M=-\int_{M} d * g(X, .)=-\int_{\partial M} * g(X, .) .
$$

It suffices to show

$$
\iota_{\partial M}^{*}(* g(X, .))=g(X, \mathbf{n}) d(\partial M) \cdot \longleftarrow
$$

Let $\left\{e_{1}, \ldots, e_{n-1}\right\}$ be an oriented orthonormal basis of $T_{p}(\partial M)$. Now with $e_{0}:=\mathbf{n}_{p}$ and $X_{k}:=g_{p}\left(X, e_{k}\right)$ and evaluating the left side we obtain
which is equal to the right hand side.

Propuition: M compact, ariested, $\partial h=\varnothing, g$ Rimamion metic.

$$
\begin{gathered}
\alpha \in \Omega^{k}(M), \beta \in \Omega^{k+1}(M), \gamma \in \Omega^{k}(M) \\
(d v, \beta)_{L_{L}}=\int_{M}\langle d \alpha, \beta\rangle d M=\int_{M}\langle\alpha, \delta \beta\rangle d M=\left(\alpha,\left.\delta \beta\right|_{L^{2}}\right.
\end{gathered}
$$

δ in the fomal L^{2}-adjaint of $d: \Omega^{k}\left(|n| \rightarrow \Omega^{h+1}(k)\right.$

$$
\Rightarrow \quad \int_{M}\langle\Delta \alpha, \gamma\rangle d M=\int_{M}\langle\alpha, \Delta \gamma\rangle d M
$$

... Green's formula
Δ is a symmetic diffential ypotos.

