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Brouwer'’s Fixed Point Theorem
Theorem 31: Every continuous map F : B” — B" from the unit
ball B" into itself admits a fixed point.

We will make use of
Proposition 32: There exists no differentiable map
f:B"— 9B" = S"1 with
f’Sn—l — idSn—l.
Proof: Assume there is such a function f. Denote by
n:S" ! R

the outer normal given by n(x) = x. Then the (n — 1)-form on
Sn—l
o = na(dxt A .. A dx")

defines a positive mass on S$"1. Hence da = 0 and

él«{a/wft_
/ a > 0.
Sn—1



Proof of Brouwer’'s Fixed Point Theorem

But by Stokes’ Theorem and f|gn—1 = idgn—1

0:/ d(f*a):/ f*a:/ a>0
n Sn—1 Sn—1

J—
and we arrive at a contradiction. d f{,#’a >: f*(clo() =0
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Proof of Brouwer’'s Fixed Point Theorem

But by Stokes’ Theorem and f|gn—1 = idgn—1
0:/ d(f*a):/ f*a:/ a>0 (—-J
n Snflt_ Sn—1

and we arrive at a contradiction.

Proof of Theorem 31: (1) Assume there is a smooth function

F : B" — B"™ without fixed points.

Define f : B" — S"~1 which assigns to x € B" the intersection of
the well-defined line through x and F(mh that

x € [f(x), F(x)]. Then /

X:

14

f’Snfl — idSnfl.

Exercise: f is smooth. B"
This contradicts Proposition 32. 1)
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Proof of Brouwer’'s Fixed Point Theorem

(2) Assume there is a continuous function F : B" — B".
Approximate F by smooth functions F, : B" — B" which converge
uniformly to F (How?).

Let x, € B be fixed points: Fp(x,) = Xs. Q
B compact: subsequence converges in B": x, — x, € B". Then

F(x:) = x.. O

(Exercise).



Riemannian Metrics

Recall: A Riemannian metric on a smooth manifold with
boundary is a smooth family {gp}p,cm of symmetric positive
definite bilinear forms on T, M. 2

M2 (ot Vo)
Proposition 33: Any separable smooth manifold with boundary
admits a Riemannian metric.

For this we will discuss the partition of unity.
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Partition of Unity

Lemma 34: Let M be a smooth manifold with boundary. Let
{U,}.c; be an open covering of M. There exist a countable family
{A\k}ken of non-negative smooth functions with compact support,
such that

(i) refinement condition: For any k € N there is a ¢« € / such that
supp(Ax) C Ue
(i) locally finiteness: for each p € M there is U C M open p € U
such that

#{k € N | supp(Ax) N U # 0} < 0.

(iii) partition of unity:

Z )‘k =1.
k=1

We will discuss the proof later, possibly.



Construction of Riemannian Metric

Proof of Proposition 33: Let {(U,, ¢,, V,)}.c/ be a smooth atlas of
M, dim M = n and let {\x}ken be a partition of unity
w.r.t. covering. Let ¢ € I, such that supp(Ax) C U,,.



Construction of Riemannian Metric

Proof of Proposition 33: Let {(U,, ¢,, V,)}.c/ be a smooth atlas of
M, dim M = n and let {\x}ken be a partition of unity
w.r.t. covering. Let ¢ € I, such that supp(Ax) C U,,.

PGM
gp—ZAk (e )p )

where (.,,) denotes the standard scalar product in R”".

Define fvr g



Construction of Riemannian Metric

Proof of Proposition 33: Let {(U,, ¢,, V,)}.c/ be a smooth atlas of
M, dim M = n and let {\x}ken be a partition of unity
w.r.t. covering. Let ¢ € I, such that supp(Ax) C U,,.

Define

gp —ZAk (L5l
k= 1\f\r—\—~

where (., ) denotes the standard scalar product in R".
(¢, 1)*(.,.) is symmetric positive definite.

8p is is finite convex linear combination of such, hence symmetric
and positive definite. [J



The Volume Form

Let M be an oriented n—dimensional manifold equipped with a
Riemannian metric g.

Definition 35: The volume form of (M, g) is the n—form, dM,
which is given at any p € M by the volume form of the oriented
euclidean vector space

dM, == d(T,M,gp). dechee 4.
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The Volume Form

Let M be an oriented n—dimensional manifold equipped with a
Riemannian metric g.

Definition 35: The volume form of (M, g) is the n—form, dM,
which is given at any p € M by the volume form of the oriented
euclidean vector space

dMp == d(T,M, gp).

Let (U, ¢, V) be an oriented chart. Then

©*(dM) = \/det(g)dx* A ... A dx".
o —_—

(Exercise). ze
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The Volume Form

In particular dM defines a positive measure. We define the volume
of (M, g) as

vol(M, g) : /dME(Ooo]

Corollary: Assume OM = () Then the de Rham chomology class
of dM is non-zero ~ Omd Covnpact, ocd g kd

[dM] # 0 € Hpgr(M).

6
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The Volume Form

In particular dM defines a positive measure. We define the volume
of (M, g) as

vol(M, g) : /dl\/lE(Ooo]

Corollary: Assume OM = (). Then the de Rham chomology class
of dM is non-zero
[dM] # 0 € Hpr(M).

If n is the outward normal vector field of M along OM, then

hy L T (260) d(OM) = n,dM.
\{ hf % =1 —_

(ExerC|se)
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Theorem 36: Let M be a compact, oriented manifold with
boundary. Then there is no smooth map ¢ : M — OM which
restricts to the identity on the boundary.
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Obstruction for Retract to the Boundary

Theorem 36: Let M be a compact, oriented manifold with
boundary. Then there is no smooth map ¢ : M — OM which
restricts to the identity on the boundary.

Proof: Let g be a Riemannian metric on M. We thus obtain its

volume form d(OM) € Q"~1(OM) which is closed: d(ddM) = 0.
Assume there is such a map ¢ : M — OM. Then

/d(aM):AMw*d(aM) 7 lam®
d

Now the volume form defines a positive measure on M and hence
the first integral is positive. Contradiction. [J
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Codifferential and Laplacian

Let (M, g) be an oriented Riemannian manifolds. The
Hodge-+-operator

1 QK(M) — Q"K(M)
is defined by the Hodge-*-operator on each A*(T,M).

The codifferential 9§ is the differential operator

5 QK(M) — Q" 1(M)
§ = (—1)"k=D=1 . s

The Laplaceoperator is the differentiakl operator

A QK(M) — QF(M)
A:=ds+d

with § = 0 on Q°(M) and d = 0 on Q"(M).



The Laplace—Beltrami Operator

g :(g,ﬂRiemann tensor in oriented coordinates, g7 its inverse, f
smooth function. In coordinates we obtain AY - S(Jf)

LA - Of
Bel = ~ Vdetg i?:zl%(mgjaxj)



The Laplace—Beltrami Operator

g = gjj Riemann tensor in oriented coordinates, gl its inverse, f
smooth function. In coordinates we obtain

Agf = — \/HZ (x/det gg’ )
J D oy db g
M=R" g={(.) OO

A Y add AL ndd)
I={1<i<...<ix<n}
= 3 (Aay)dx™ A ... A dxs
I={1<ii<...<ix<n}

where Aqy is the classical Laplace-operator on functions on R".

b4 2”Z T “—

L=t bkk



Gauss' Divergence Theorem

Definition 37: Let X be a smooth vector field on an oriented
Riemannian manifold (M, g). The divergence of X is the smooth
real function divX defined by

divX = §(g(X, ))
€ ()



Gauss' Divergence Theorem

Definition 37: Let X be a smooth vector field on an oriented
Riemannian manifold (M, g). The divergence of X is the smooth
real function divX defined by

divX :=d(g(X,.)
Theorem 38: With the notation above

/MdivX dM = 2/8M g(X.n)d(OM).

where n is the outward normal along OM.



Gauss' Divergence Theorem
Proof: We have

-1

divX dM = 6(g(X,.)) = *(l/* d(xg(X,.)))
—

j\ ——

1= dM IR



Gauss' Divergence Theorem
Proof: We have

divX dM = #6(g(X,.)) = *(— * d(xg(X, .))) = —d(xg(X,.)).

Applying Stokes’ Theorem we get
%

/MdivX dM = — /M dfeg(X,.)= - /BM «g(X,.).
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Gauss' Divergence Theorem
Proof: We have

divX dM = #6(g(X,.)) = *(— * d(xg(X, .))) = —d(xg(X,.)).

Applying Stokes’ Theorem we get

/ dideI\/I:—/ d*g(X,.):—/ vg(X,.).
M M oM
It suffices to show

u(E(X.)) = (X, m)d(OM).<!

Let {e1,...,en—1} be an oriented orthonormal basis of T,(0M).

Now with ey := n, and Xj := g,(X, ex) and evaluating the left

side we obtain __,_\___
n— 1( 1)

(xg(X,.))(e1,...,en—1) = (ZW/\ /\e"/\ ANe” 1)(e1, vy en_1) = Xo
=t J/Xe )= j/)’k}

which is equal to the right hand side.
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