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Brouwer’s Fixed Point Theorem
Theorem 31: Every continuous map F : Bn → Bn from the unit
ball Bn into itself admits a fixed point.

We will make use of
Proposition 32: There exists no differentiable map
f : Bn → ∂Bn = Sn−1 with

f |Sn−1 = idSn−1 .

Proof: Assume there is such a function f . Denote by

n : Sn−1 → Rn

the outer normal given by n(x) = x . Then the (n − 1)–form on
Sn−1

α := ny(dx1 ∧ ... ∧ dxn)
defines a positive mass on Sn−1. Hence dα = 0 and∫

Sn−1
α > 0.
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Proof of Brouwer’s Fixed Point Theorem

But by Stokes’ Theorem and f |Sn−1 = idSn−1

0 =
∫

Bn
d(f ∗α) =

∫
Sn−1

f ∗α =
∫

Sn−1
α > 0

and we arrive at a contradiction.

Proof of Theorem 31: (1) Assume there is a smooth function
F : Bn → Bn without fixed points.
Define f : Bn → Sn−1 which assigns to x ∈ Bn the intersection of
the well-defined line through x and F (x), such that
x ∈ [f (x),F (x)]. Then

f |Sn−1 = idSn−1 .

Exercise: f is smooth.
This contradicts Proposition 32.
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Proof of Brouwer’s Fixed Point Theorem

(2) Assume there is a continuous function F : Bn → Bn.
Approximate F by smooth functions Fn : Bn → Bn which converge
uniformly to F (How?).

Let xn ∈ B be fixed points: Fn(xn) = xn.
B compact: subsequence converges in Bn: xn → x∗ ∈ Bn. Then

F (x∗) = x∗. �

(Exercise).
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Riemannian Metrics

Recall: A Riemannian metric on a smooth manifold with
boundary is a smooth family {gp}p∈M of symmetric positive
definite bilinear forms on TpM.

Proposition 33: Any separable smooth manifold with boundary
admits a Riemannian metric.

For this we will discuss the partition of unity.



Partition of Unity
Lemma 34: Let M be a smooth manifold with boundary. Let
{Uι}ι∈I be an open covering of M. There exist a countable family
{λk}k∈N of non-negative smooth functions with compact support,
such that

(i) refinement condition: For any k ∈ N there is a ι ∈ I such that
supp(λk) ⊂ Uι
(ii) locally finiteness: for each p ∈ M there is U ⊂ M open p ∈ U
such that

]{k ∈ N | supp(λk) ∩ U 6= ∅} <∞.

(iii) partition of unity:

∞∑
k=1

λk ≡ 1.

We will discuss the proof later, possibly.
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Construction of Riemannian Metric

Proof of Proposition 33: Let {(Uι, ϕι,Vι)}ι∈I be a smooth atlas of
M, dim M = n and let {λk}k∈N be a partition of unity
w.r.t. covering. Let ιk ∈ I, such that supp(λk) ⊂ Uιk .

Define
gp :=

∞∑
k=1

λk(p)(ϕ−1
ιk )∗p〈., .〉

where 〈., 〉 denotes the standard scalar product in Rn.

(ϕ−1
ιk )∗〈., .〉 is symmetric positive definite.

gp is is finite convex linear combination of such, hence symmetric
and positive definite. �
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The Volume Form

Let M be an oriented n–dimensional manifold equipped with a
Riemannian metric g .
Definition 35: The volume form of (M, g) is the n–form, dM,
which is given at any p ∈ M by the volume form of the oriented
euclidean vector space

dMp := d(TpM, gp).

Let (U, ϕ,V ) be an oriented chart. Then

ϕ∗(dM) =
√

det(g)dx1 ∧ ... ∧ dxn.

(Exercise).
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The Volume Form

In particular dM defines a positive measure. We define the volume
of (M, g) as

vol(M, g) :=
∫

M
dM ∈ (0,∞].

Corollary: Assume ∂M = ∅. Then the de Rham chomology class
of dM is non-zero

[dM] 6= 0 ∈ Hn
DR(M).

If n is the outward normal vector field of M along ∂M, then

d(∂M) = nydM.

(Exercise).
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Obstruction for Retract to the Boundary

Theorem 36: Let M be a compact, oriented manifold with
boundary. Then there is no smooth map ϕ : M → ∂M which
restricts to the identity on the boundary.

Proof: Let g be a Riemannian metric on ∂M. We thus obtain its
volume form d(∂M) ∈ Ωn−1(∂M) which is closed: d(d∂M) = 0.
Assume there is such a map ϕ : M → ∂M. Then∫

∂M
d(∂M) =

∫
∂M

ϕ∗d(∂M)

=
∫

M
d(ϕ∗(d(∂M))

=
∫

M
ϕ∗d(d(∂M)) = 0.

Now the volume form defines a positive measure on ∂M and hence
the first integral is positive. Contradiction. �
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Codifferential and Laplacian
Let (M, g) be an oriented Riemannian manifolds. The
Hodge-∗-operator

∗ : Ωk(M) −→ Ωn−k(M)

is defined by the Hodge-∗-operator on each Λ∗(TpM).

The codifferential δ is the differential operator

δ : Ωk(M) −→ Ωk−1(M)
δ := (−1)n(k−1)−1 ∗ d∗

The Laplaceoperator is the differentiakl operator

∆ : Ωk(M) −→ Ωk(M)
∆ := dδ + δd

with δ = 0 on Ω0(M) and d = 0 on Ωn(M).
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The Laplace–Beltrami Operator

g = gij Riemann tensor in oriented coordinates, g ij its inverse, f
smooth function. In coordinates we obtain

∆g f = − 1√
det g

n∑
i ,j=1

∂

∂xi

(√
det gg ij ∂f

∂xj

)

M = Rn, g = 〈., 〉

∆
( ∑

I={1≤i1<...<ik≤n}
αIdx i1 ∧ ... ∧ dx ik

)
=

∑
I={1≤i1<...<ik≤n}

(∆αI)dx i1 ∧ ... ∧ dx ik

where ∆αI is the classical Laplace-operator on functions on Rn.
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Gauss’ Divergence Theorem

Definition 37: Let X be a smooth vector field on an oriented
Riemannian manifold (M, g). The divergence of X is the smooth
real function divX defined by

divX := δ(g(X , .)

Theorem 38: With the notation above∫
M
divX dM = −

∫
∂M

g(X ,n)d(∂M).

where n is the outward normal along ∂M.
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Gauss’ Divergence Theorem
Proof: We have

divX dM = ∗δ(g(X , .)) = ∗(− ∗ d(∗g(X , .))) = −d(∗g(X , .)).

Applying Stokes’ Theorem we get∫
M
divX dM = −

∫
M

d ∗ g(X , .) = −
∫
∂M
∗g(X , .).

It suffices to show

ι∗∂M(∗g(X , .)) = g(X ,n)d(∂M).

Let {e1, ..., en−1} be an oriented orthonormal basis of Tp(∂M).
Now with e0 := np and Xk := gp(X , ek) and evaluating the left
side we obtain

(∗g(X , .))(e1, ..., en−1) =
( n−1∑

k=0
Xie0∧...∧êk∧...∧en−1

)
(e1, ..., en−1) = X0 = gp(X ,n)

which is equal to the right hand side. �
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