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Recall the definition of a topological space.



Fibre Bundles
Definition 39: A fibre bundle (E ,B, π,F ) of topological spaces
consists of a continuous map π : E → B such that there for each
point p ∈ B there is an open neighbourhood U ⊂ B and a
homeomorphism

Φ : π−1(U)→ U × F

so that prU(Φ(e)) = π(e).

F is called the fibre, B the base, E the
total space, π the projection. Φ is called a local trivialization.

Remark: It follows that each fibre, π−1(p) ∼= F is homeomorphic
to F .

Lemma 40: Let π : E → B be a topological fibre bundle over a
separable metric space B with fibre (homeomorphic to) a metric
space F . Then E is a metrizable space.

The proof is left as an exercise.
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Fibre bundles

Example: (1) The product B × F is called the trivial F–bundle
over B.

(2) The compact Moebius strip M2 is a non-trivial [−1, 1]–bundle
over S1.
(3) If F is equipped with the discrete topology then (E ,B, π,F ) is
also called a covering (space) of B. E.g. ∂M2 of (2) is a
(non-trivial) covering of S1.
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Fibre Bundles of Manifolds

Definition 41: A fibre bundle of manifolds is a fibre bundle
(E ,B, π,F ) where E ,B,F are manifolds, π : E → B is smooth and
the local trivializations Φ : π−1(U)→ U × F can be chosen to be
diffeomorphisms.

Remark: The projection π of a fibre bundle of manifolds is always
a surjection, i.e. for every e ∈ E its differential
deπ : TeE → Tπ(e)B is surjective.

Examples: (1) (B × F ,B, prB,F ) is the trivial bundle of manifolds.

(2) (R,R, π, {∗}), where π(x) = x3 is topological bundle but not a
bundle of manifolds.
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The Hopf Bundle
Examples: (3) Consider the 3–sphere as

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}.

Recall that S2 ∼= CP1 are diffeomorphic where the complex
projective line is defined as

{[z1, z2]|(z1, z2) ∈ C2 \ {0}}

where [z1, z2] denotes the equivalence class of (z1, z2) for the
relation

(z1, z2) ∼ λ(z1, z2)

for any λ ∈ C \ {0}. Then π : S3 → S2

π(z1, z2) := [z1, z2]

is a fibre bundle of manifolds with fibre π. (Exercise)
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Bundle Morphisms
Definition 42: Let (Ei ,Bi , πi ,Fi ), i1, 2 be two fibre bundles (of
manifolds), ϕ : B1 → B2 be a continuous map of their bases.

A
morphism or bundle map covering ϕ is a continuous (smooth)
map Φ : E1 → E2 such that

π2 ◦ Φ = ϕ ◦ π1.

If B1 = B2 and no map ϕ is mentioned, then it is assumed that
ϕ = idB.

An bundle isomorphism is a bundle morphism Φ : E1 → E2 which
is a homeomorphism (diffeomorphism). Notice, that its inverse is a
bundle morphism and the covered map of the bases is also a
homeomorphism (diffeomorphism).

Example: A trivialization Φ : π−1(U)→ U × F is a isomorphism of
(π−1(U),U, π,F ) and (U × F ,U, prU ,F ).
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Transition Functions

Let (E ,B, π,F ) be a topological fibre bundle.

U,V ⊂ B open sets, Φ : π−1(U)→ U × F and
Ψ : π−1(V )→ V × F trivializations.

On U ∩ V the composition

Ψ ◦ Φ−1 : (U ∩ V )× F → U ∩ V × F

has the form
Ψ ◦ Φ−1(p, f ) = (p, g(p, f ))

where g(p, .) : F → F is a continuous family of homeomorphisms.
g : U ∩ V → Homeo(F ) is called transition function.
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Cocycle Condition
Lemma 43: (1) Let Φi : Ui × F → π−1(Ui ) i = 1, 2, 3 be three
trivializations of the bundle over open subsets Ui and denote by
gij : Ui ∩ Uj → Homeo(F ) the transition function defined by
Φi ◦ Φ−1

j (p, f ) = (p, gij(p, f )).

Then

gii (p, .) = idF ∀p ∈ Ui

gij(p, .) ◦ gjk(p, , .) ◦ gik(p, .) = idF ∀p ∈ U1 ∩ U2 ∩ U3.

(2) Let (Ui )i∈I be an open covering of the topological space B and
{gij : Ui ∩ Uj → Homeo(F )}i ,j∈I be a family of maps to the
homeomorphism group of a topological space F which satisfy the
condition of (1). Then there exists a fibre bundle (E ,B, π,F )
which admits trivializations over Ui whose transition functions are
exactly given by {gij}ij∈I . Any two such bundles are isomorphic.
(3) Everything remains valid if we consider in (1) and (2) fibre
bundles of manifolds and replace continuous by smooth,
homeomorphisms by diffeomorphism.
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Fibre Products
Given two fibre bundles (of manifolds) (Ei ,Bi , πi ,Fi ) the cartesian
product (E1 × E2,B1 × B2, π1 × π2,F1 × F2) where

π1 × π2(e1, e2) := (π1(e1), π2(e2))

is a fibre bundle (of manifolds).

If C ⊂ B is a subset (submanifold), then the restriction of the
bundle to C , (E |C := π−1(C),C , π|E |C ,F ) is a fibre (of manifolds)
over C .

Definition 44: Given two fibre bundles (of manifolds) over the
same base (Ei ,B, πi ,Fi ), their fibre product is defined by the
restriction of their cartesian product to the diagional

∆B := {(b, b)|b ∈ B} ∼= B

naturally identified with B by (b, b) 7→ b.
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Vector Bundles
Definition 45: A (real) vector bundle of rank k is a fibre bundle
(E ,B, π,Rk) (of manifolds), such that each fibre is a vector space
and the trivializations can be chosen to be R–linear on each fibre.

In particular, the transition function for two such trivializations is a
continuous (smooth) map

g : U ∩ V −→ Gl(k;R).

Remark: For two vector bundles over the same base
(Ei ,B, πi ,Rki ) denote by E1 ⊕ E2 their fibre product. Then the
addition defines a morphism of fibre bundles (of manifolds)

E ⊕ E → E

as well as the scalar multiplication

R× E → E .
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Vector Bundles

Morphisms of vector bundles are morphisms of bundles (of
manifolds) which restricts to each fibre as a homomorphism of
vector bundles.
Examples: (1) The trivial vector bundle B × Rk .
(2) The Moebius bundle:



Tangent Bundles












