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Cocycle Condition
Lemma 43: (1) Let Φi : Ui × F → π−1(Ui ) i = 1, 2, 3 be three
trivializations of the bundle over open subsets Ui and denote by
gij : Ui ∩ Uj → Homeo(F ) the transition function defined by
Φi ◦ Φ−1

j (p, f ) = (p, gij(p, f )).

Then

gii (p, .) = idF ∀p ∈ Ui

gij(p, .) ◦ gjk(p, , .) ◦ gik(p, .) = idF ∀p ∈ U1 ∩ U2 ∩ U3.

(2) Let (Ui )i∈I be an open covering of the topological space B and
{gij : Ui ∩ Uj → Homeo(F )}i ,j∈I be a family of maps to the
homeomorphism group of a topological space F which satisfy the
condition of (1). Then there exists a fibre bundle (E ,B, π,F )
which admits trivializations over Ui whose transition functions are
exactly given by {gij}ij∈I . Any two such bundles are isomorphic.
(3) Everything remains valid if we consider in (1) and (2) fibre
bundles of manifolds and replace continuous by smooth,
homeomorphisms by diffeomorphism.
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Vector Bundles
Definition 45: A (real) vector bundle of rank k is a fibre bundle
(E ,B, π,Rk) (of manifolds), such that each fibre is a vector space
and the trivializations can be chosen to be R–linear on each fibre.

In particular, the transition function for two such trivializations is a
continuous (smooth) map

g : U ∩ V −→ Gl(k;R).

Remark: For two vector bundles over the same base
(Ei ,B, πi ,Rki ) denote by E1 ⊕ E2 their fibre product. Then the
addition defines a morphism of fibre bundles (of manifolds)

E ⊕ E → E

as well as the scalar multiplication

R× E → E .
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The Tangent Bundle

Proposition 46: (1) The disjoint union of the family {TpM}p∈M
of tangent spaces of a smooth manifold of dimension n forms a
smooth vectorbundle of rank n over that manifold where the
projection is given by

π(X ) = p for X ∈ TpM.

(2) Given a chart (U, ϕ,V ) the map

X ∈ π−1(U) 7→ (π(X ), (x1, ..., xn)) ∈ U × Rn

where
X =

n∑
j=1

Xj
∂

∂xj
(π(X )),

is a trivialization of this bundle.
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The Tangent Bundle

Proof: Let φ := ϕ̃−1 ◦ ϕ : ϕ−1(U ∩ Ũ)→ ϕ̃−1(U ∩ Ũ) be the
transition map between two charts from the differentiable atlas
(U, ϕ,V ) and (Ũ, ϕ̃, Ṽ ).

Then for the coordinate vector fields we
have

∂

∂x̃i
=

n∑
j=1

∂φi
∂xj

∂

∂xj
.

Hence the transition function of the prospective trivializations are
given by g : U ∩ Ũ → Gl(n; R)

g(p) =
(∂φi
∂xj

)n

i ,j=1
= Dϕ−1(p)φ

M was a smooth manifold, the transition map φ is smooth, hence
g is smooth.
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(U, ϕ,V ) and (Ũ, ϕ̃, Ṽ ). Then for the coordinate vector fields we
have

∂

∂x̃i
=

n∑
j=1

∂φi
∂xj

∂

∂xj
.

Hence the transition function of the prospective trivializations are
given by g : U ∩ Ũ → Gl(n; R)
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The Tangent Bundle
Φ : V × Rn → π−1(U) given by

Φ(x , v) :=
(
ϕ(x),

n∑
j=1

vj
∂

∂xj

)
defines a bijective map such that the transition maps between any
two of them are differentiable. Therefore they form a differentiable
atlas of the tangent space

TM :=
∐

p∈M
TpM.

The trivializations {Φι} define a topological vector bundle. By
Lemma 40 its total space TM admits a metric.
Hence TM is a manifold. The projection map π : TM → M
w.r.t. any of the charts (π−1(U),Φ,V × Rn) takes the form

ϕ−1 ◦ π ◦ Φ(x , v) = x

and is hence smooth.
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Fibres, Sections and Vector Fields
For a smooth fibre bundle (E ,B, π,F ) each fibre
Ep := π−1(p) ⊂ E is a submanifold.

A smooth section is smooth map σ : B → E such that
π ◦ σ = idM . The image σ(B) ⊂ E of a smooth section is a
submanifold.

A smooth vector field on M is a smooth section X : M → TM of
TM.

Example: Consider T (TM) – the tangent space of the tangent
space of a manifold. For each v ∈ TM there is a canonical
subspace Tπ(v)M ∼= Tv (Tπ(v)M) ⊂ Tv (TM) – the tangent space
to the fibre Tπ(v)M.
Then X : TM → T (TM) defined by

X (v) := v

is a smooth vector field on TM, called the Euler field.
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The Cotangent Bundle

Similarly, the cotangent spaces {T ∗p M}p∈M form the cotangent
bundle, T ∗M, of M

T ∗M :=
∐

p∈M
T ∗p M.

π : T ∗M → M is given by

π(α) = p for α ∈ T ∗M.

With a differentiable chart (U, ϕ,V )

α ∈ π−1(U) 7→ (π(α), (α( ∂

∂x1
), ..., α( ∂

∂xn
)))

provides the local trivializations.
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The Cotangent Bundle

With φ = ϕ̃−1 ◦ ϕ for differentiable charts as before the transition
map g∗ : U ∩ Ũ → Gl(n;R) from the trivialization related to
(U, ϕ,V ) to the trivialization related to (Ũ, ϕ̃, Ṽ ) is given by

g∗(p) = (g(p)−1)T .

The tautological one form, θ ∈ Ω1(T ∗M) is defined by

θα(X ) := α(dp(X ))

where α ∈ T ∗p M and X ∈ Tα(T ∗M).

Exercise: Express θ in coordinates of T ∗M around α provided by a
chart of M and compute its exterior derivative dθ.
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Subbundles
Notation: We often write vector bundle π : E → M of rank k or
E π→ M.

Definition 47: Let E π→ M be a smooth vector bundle.
(1) A subbundle of E is a submanifold F ⊂ E such that
π(F ) = M and for any p ∈ M, π−1(p) ∩ F ⊂ Ep is a linear
subspace.
(2) The dual (bundle), E ∗ π

∗
→ M of E is given by

E ∗ :=
∐

p∈M
(Ep)∗

and the obvious projection map π∗ together with the following
trivializations: Let Φ : π−1(U)→ U × Rn be a local trivialization
of E then (Φ−1)∗ : (π∗)−1(U)→ U × (Rk)∗ assigns

α ∈ T ∗p M 7→ α ◦ Φ(p, .)−1 ∈ (Rk)∗
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Tensor Products

Definition 48: Given to vector bundles Ei
πi→ M their tensor

product E1 ⊗ E2
π
to M is given by

E1 ⊗ E2 =
∐

p∈M
B((E1)∗p, (E2)∗p)

where B((E1)∗p, (E2)∗p) denotes the vector space of bilinear forms
α : (E1)∗p × (E2)∗p → R.

Remark: This definition is only good if the rank of the bundles is
finite! Then (Ei )∗∗p ∼= (Ei )p. Notice that the fibre of E ∗1 ⊗ E ∗2 is
given by bilinear maps B(E1,E2).
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