Differential Geometry II Connections of Vector Bundles

Klaus Mohnke

May 19, 2020

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

For two vectorbundles E, F over a manifold M we denote by

$$Hom(E,F) := E^* \otimes F$$

the bundle of fibrewise homomorphism between them.

For two vectorbundles E, F over a manifold M we denote by

$$Hom(E,F) := E^* \otimes F$$

the bundle of fibrewise homomorphism between them. The fibre is given by

$$Hom(E,F)_p := Hom(E_p,F_p) = E_p^* \otimes F_p.$$

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

(ロ)、(型)、(E)、(E)、(E)、(O)()

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

Definition 49: A covariant derivative or connection, ∇ , assigns to a smooth section $\sigma : M \to E$ and a tangent vector $X \in T_pM$ a vector $\nabla_X \sigma \in E_p = \pi^{-1}$ such that for all smooth sections $\sigma, \tau : M \to E$ and functions $f : M \to \mathbb{R}$, tangent vectors $X, Y \in T_pM$ and $\lambda \in \mathbb{R}$

TTO O = idM

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

Definition 49: A covariant derivative or connection, ∇ , assigns to a smooth section $\sigma : M \to E$ and a tangent vector $X \in T_pM$ a vector $\nabla_X \sigma \in E_p = \pi \overline{f_p}$ such that for all smooth sections $\sigma, \tau : M \to E$ and functions $f : M \to \mathbb{R}$, tangent vectors $X, Y \in T_pM$ and $\lambda \in \mathbb{R}$

(i)
$$\nabla_{X+\lambda Y}\sigma = \nabla_X\sigma + \lambda\nabla_Y\sigma \quad \boldsymbol{\epsilon} \quad \boldsymbol{\xi}_{\boldsymbol{\rho}}$$

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

Definition 49: A covariant derivative or connection, ∇ , assigns to a smooth section $\sigma : M \to E$ and a tangent vector $X \in T_pM$ a vector $\nabla_X \sigma \in E_p = \pi^{-1}$ such that for all smooth sections $\sigma, \tau : M \to E$ and functions $f : M \to \mathbb{R}$, tangent vectors $X, Y \in T_pM$ and $\lambda \in \mathbb{R}$

(i)
$$\nabla_{X+\lambda Y}\sigma = \nabla_X\sigma + \lambda\nabla_Y\sigma$$

(ii) $\nabla_X(\sigma+\tau) = \nabla_X\sigma + \nabla_Y\varphi$

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

Definition 49: A covariant derivative or connection, ∇ , assigns to a smooth section $\sigma : M \to E$ and a tangent vector $X \in T_pM$ a vector $\nabla_X \sigma \in E_p = \pi^{-1}$ such that for all smooth sections $\sigma, \tau : M \to E$ and functions $f : M \to \mathbb{R}$, tangent vectors $X, Y \in T_pM$ and $\lambda \in \mathbb{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(i)
$$\nabla_{X+\lambda Y}\sigma = \nabla_X\sigma + \lambda\nabla_Y\sigma$$

(ii) $\nabla_X(\sigma+\tau) = \nabla_X\sigma + \nabla_Y\sigma$
(iii) $\nabla_X(f\sigma) = X(f)\sigma(p) + f(p)\nabla_X\sigma$ (Leibniz' rule)

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

Definition 49: A covariant derivative or connection, ∇ , assigns to a smooth section $\sigma : M \to E$ and a tangent vector $X \in T_pM$ a vector $\nabla_X \sigma \in E_p = \pi^{-1}$ such that for all smooth sections $\sigma, \tau : M \to E$ and functions $f : M \to \mathbb{R}$, tangent vectors $X, Y \in T_pM$ and $\lambda \in \mathbb{R}$

(i)
$$\nabla_{X+\lambda Y}\sigma = \nabla_X\sigma + \lambda\nabla_Y\sigma$$

(ii) $\nabla_X(\sigma + \tau) = \nabla_X\sigma + \nabla_Y\sigma$
(iii) $\nabla_X(f\sigma) = X(f)\sigma(p) + f(p)\nabla_X\sigma$ (Leibniz' rule)

Moreover, if X is smooth vector field on M, then $\nabla_X \sigma$ is a smooth section. $\nabla_{\mu X} \sigma = \int \nabla_X \sigma$

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

Definition 49: A covariant derivative or connection, ∇ , assigns to a smooth section $\sigma : M \to E$ and a tangent vector $X \in T_pM$ a vector $\nabla_X \sigma \in E_p = \pi^{-1}$ such that for all smooth sections $\sigma, \tau : M \to E$ and functions $f : M \to \mathbb{R}$, tangent vectors $X, Y \in T_pM$ and $\lambda \in \mathbb{R}$

(i)
$$\nabla_{X+\lambda Y}\sigma = \nabla_X\sigma + \lambda\nabla_Y\sigma$$

(ii) $\nabla_X(\sigma + \tau) = \nabla_X\sigma + \nabla_Y\sigma$
(iii) $\nabla_X(f\sigma) = X(f)\sigma(p) + f(p)\nabla_X\sigma$ (Leibniz' rule)

Moreover, if X is smooth vector field on M, then $\nabla_X \sigma$ is a smooth section.

A section $\sigma: M \to E$ satisfying $\nabla \sigma \equiv 0$ is called **parallel section**.

e Covariant Derivative $\begin{aligned}
\widetilde{\sigma} &: \Lambda \to \underline{F} \\
\widetilde{\sigma}(p) &= (p, \sigma(p)) \\
Examples: \quad (1) \text{ If } E &= M \times \mathbb{R}^k, \text{ i.e. the trivial bundle, } \sigma &: M \to \mathbb{R}^k
\end{aligned}$ smooth defines a section and $X \in T_p M$:

$$\nabla_X \sigma := X(\sigma) = (d\sigma_j(X))_{j=1}^k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

defines the **trivial connection** on *E*.

Examples: (1) If $E = M \times \mathbb{R}^k$, i.e. the trivial bundle, $\sigma : M \to \mathbb{R}^k$ smooth defines a section and $X \in T_p M$:

$$\nabla_X \sigma := X(\sigma) = (d\sigma_j(X))_{j=1}^k$$

defines the **trivial connection** on *E*. (2) Any $A \in \Omega^1(M, M(p; \mathbb{R}))$ by $\nabla^A_X \sigma := X(\sigma) + A(X)(\sigma(p))$

defines a connection on the trivial bundle E.

Examples: (1) If $E = M \times \mathbb{R}^k$, i.e. the trivial bundle, $\sigma : M \to \mathbb{R}^k$ smooth defines a section and $X \in T_p M$:

$$\nabla_X \sigma := X(\sigma) = (d\sigma_j(X))_{j=1}^k$$

defines the **trivial connection** on *E*.

(2) Any
$$A\in \Omega^1(M,M(n;\mathbb{R}))$$
 by $abla^A_X\sigma:=X(\sigma)+A(X)(\sigma(p))$

defines a connection on the trivial bundle E.

(3) A connection ∇ on the tangent bundle *TM* of a smooth manifold *M* is called an **affine connection**. If *M* is a Riemannian manifold and ∇ metric and torsion free, then it is the uniquely determined **Levi Civita connection**.

Lemma 50: (1) Let ∇ be a connection on the vector bundle $E \xrightarrow{\pi} M$ over a manifold M. It induces a unique connection on the dual E^* via $(\sum_{p} A) (\sum_{q} E_p) ($

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

for any smooth section $\alpha: M \to E^*$, $\sigma: M \to E$, $p \in M$ and $X \in T_pM$.

Lemma 50: (1) Let ∇ be a connection on the vector bundle $E \xrightarrow{\pi} M$ over a manifold M. It induces a unique connection on the dual E^* via

$$\nabla_X^* \alpha(\sigma(p)) := X(\alpha(\sigma)) - \alpha_p(\nabla_X \sigma)$$

for any smooth section $\alpha : M \to E^*$, $\sigma : M \to E$, $p \in M$ and $X \in T_pM$.

(2) Let ∇^k be connections on the vector bundles $E_k \xrightarrow{\pi_k} M$ (k = 1, 2). They induce a unique connection ∇^{\oplus} on $E_1 \oplus E_2$ by

$$\nabla_X^{\oplus}(\sigma_1,\sigma_2) = (\nabla_X^1 \sigma_1, \nabla_X^2 \sigma_2)$$

for any smooth sections $\sigma_k: M o E_k$, k=1,2

Lemma 50: (1) Let ∇ be a connection on the vector bundle $E \xrightarrow{\pi} M$ over a manifold M. It induces a unique connection on the dual E^* via

$$\nabla_X^* \alpha(\sigma(p)) := X(\alpha(\sigma)) - \alpha_p(\nabla_X \sigma) \qquad \longleftarrow$$

for any smooth section $\alpha : M \to E^*$, $\sigma : M \to E$, $p \in M$ and $X \in T_pM$.

(2) Let ∇^k be connections on the vector bundles $E_k \xrightarrow{\pi_k} M$ (k = 1, 2). They induce a unique connection ∇^{\oplus} on $E_1 \oplus E_2$ by

$$\nabla_X^{\oplus}(\sigma_1,\sigma_2) = (\nabla_X^1 \sigma_1, \nabla_X^2 \sigma_2)$$

for any smooth sections $\sigma_k: M o E_k$, k=1,2

(3) They induce also a unique connection ∇^{\otimes} on $E_1 \otimes E_2$ via $\nabla^{\otimes}_X(\sigma_1 \otimes \sigma_2) = (\nabla^1_X \sigma_1) \otimes \sigma_2(p) + \sigma_1(p) \otimes (\nabla^2_X \sigma_2).$

Proof: (3) Any Fredien
$$\sigma: M - 1 E_1 \otimes E_2$$
 is given:
 $\forall p \in M \exists h \in M qrm, p \in h \&$
 $\sigma_{1j}: h - 1E_1, \sigma_{2j}: h - 1E_2 \text{ should } j=1,...,N$
 $\sigma_{1h} = \sum_{j=1}^{N} \sigma_{1j} \otimes \sigma_{2j}$

(1)
$$E^{*} - ih, P^{*} duf. an elme., h:= the
peh, heh open, peh & $\overline{\Phi}: \overline{\pi}^{2}(h) - ihxR^{k}$
 $\sim i \quad \sigma_{1,...,} \sigma_{k}: h \rightarrow E/h$ sections, $(\sigma_{1}(x), \sigma_{k}(x)) < E_{x}$
 $\overline{\chi}^{*} \in \overline{E}_{p}^{*}$ is uniquely determined by its value on
 $\sigma_{1}(h)_{1...,} \sigma_{k}(p)$$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma : B \to E$ a section.

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma : B \to E$ a section.

There is a natural splitting

$$\underbrace{T_{b}B}_{(X,V)} \oplus \underbrace{T_{\sigma(b)}E}_{(X,V)} \mapsto \underbrace{d_{b}\sigma(X)}_{\mathcal{C}} + V.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma : B \to E$ a section.

There is a natural splitting

$$T_b B \oplus T_{\sigma(b)} F \cong T_{\sigma(b)} E$$

 $(X, V) \mapsto d_b \sigma(X) + V.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

A vector bundle $E \xrightarrow{\pi} M$ admits a canonical section, the **zero** section.

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma : B \to E$ a section.

splitting $T_b B \oplus T_{\sigma(b)} F \cong T_{\sigma(b)} E$ EThere is a natural splitting $(X, V) \mapsto d_b \sigma(X) + V.$ dott : ToE => T M A vector bundle $E \xrightarrow{\pi} M$ admits a canonical section, the **zero** section. $T_{p}M \oplus \underline{E_{p}} \cong \overline{T_{p}E} \stackrel{\checkmark}{\leftarrow} Canonically$ mly at fauls of two sectionsThus for $p \in M$ where $E_p \cong T_{0_p} E_p$.

- * ロ * * 母 * * ミ * ミ * ミ * の < ぐ

Definition 51: Let ∇ be a connection on a vector bundle $E \xrightarrow{\pi} M$ of rank $k, \Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ a smooth trivialization, $U \subset M$, open. Then

 $A := \Phi \circ \nabla \circ \Phi^{-1} \in \Omega^{1}(U, M(k, \mathbb{R})).$ i.e. $A(k) = \Phi \circ V_{k} \circ \Phi^{-1}$

A is called the **connection** 1-form of ∇ w.r.t. the trivialization Φ .

or

Definition 51: Let ∇ be a connection on a vector bundle $E \xrightarrow{\pi} M$ of rank $k, \Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ a smooth trivialization, $U \subset M$, open. Then

 $U \subset M, \text{ open. Then} \qquad \mathcal{A} := \left(\Phi \circ \nabla \circ \Phi^{-1} \in \Omega^{1}(U, M(k, \mathbb{R})) \right).$ $\Phi \circ \nabla \circ \Phi^{-1} = \mathcal{A} + \mathcal{A}$

A is called the **connection** 1-**form** of ∇ w.r.t. the trivialization Φ .

Given a section
$$\sigma: U \to E$$
 we have $ef(A,R) \in \mathbb{R}^{\ell}$
 $\mathbb{R}^{\ell} \supset \Phi(\nabla_X \sigma) = X(\Phi \circ \sigma)) + A(X)(\Phi(\sigma(p)))$
for any tangent vector $X \in T_p M$ or $M(\mathcal{R}, \mathcal{Q}'(\mathcal{H}))$
 $\longrightarrow \Phi(\nabla \sigma) = d(\Phi \circ \sigma)) + A(\Phi \circ \sigma))$.
 $\mathcal{E} = \mathcal{Q}'(\mathcal{H}, E)$
 $\mathcal{E} = \mathcal{Q}'$

Lemma 52: Given another trivialization $\Psi : \pi^{-1} \xrightarrow{h} V \times \mathbb{R}^k$, and $\Psi \circ \Phi^{-1} : (U \cap V) \times \mathbb{R}^k \to (U \cap V) \times \mathbb{R}^k$ given by the transition function $g : U \cap V \to Gl(k; \mathbb{R}), \Psi \circ \Phi^{-1}(p, v) = (p, g(p)v).$

Lemma 52: Given another trivialization $\Psi : \pi^{-1} \to V \times \mathbb{R}^k$, and $\Psi \circ \Phi^{-1} : (U \cap V) \times \mathbb{R}^k \to (U \cap V) \times \mathbb{R}^k$ given by the transition function $g : U \cap V \to Gl(n; \mathbb{R}), \Psi \circ \Phi^{-1}(p, v) = (p, g(p)v).$

Then for the two connection 1-forms A_{Φ} and A_{Ψ} we have

$$A_{\Phi} = g^{-1}dg + g^{-1}A_{\Psi}g.$$

Lemma 52: Given another trivialization $\Psi : \pi^{-1} \to V \times \mathbb{R}^k$, and $\Psi \circ \Phi^{-1} : (U \cap V) \times \mathbb{R}^k \to (U \cap V) \times \mathbb{R}^k$ given by the transition function $g : U \cap V \to Gl(n; \mathbb{R})$, $\Psi \circ \Phi^{-1}(p, v) = (p, g(p)v)$.

Then for the two connection 1-forms A_{Φ} and A_{Ψ} we have

$$A_{\Phi} = g^{-1}dg + g^{-1}A_{\Psi}g. \qquad (\neg)$$

$$Proof: \quad ke(all (my hn k)) \quad f_{\Psi}V_{Fichian} \quad \sigma: h_{\Pi}V_{-})E$$

$$\forall \sigma = 4^{-1}(d + A_{\Psi})(\Psi \cdot \sigma) = \underbrace{\overline{\Phi}^{-1}(d + A_{\overline{\Phi}})(\underline{\Phi} \cdot \sigma)}_{= \underbrace{\overline{\Phi}^{-1}(d + A_{\Psi})(\underbrace{\overline{\Psi} \cdot \overline{\Phi}^{-1}}_{= \underbrace{\overline{\Phi}^{-1}(\underbrace{\overline{\Phi}^{-1}(d + A_{\Psi})(\underbrace{\overline{\Psi} \cdot \overline{\Phi}^{-1}}_{= \underbrace{\overline{\Phi}^{-1}(d + A_{\Psi})(\underline{\Psi} \cdot \underline{\Phi}^{-1}}_{= \underbrace{\overline{\Phi}^{-1}(d + A_{\Psi})(\underline{\Psi} \cdot \underline{\Phi}^{-1})_{$$

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇ . Let $g : P \to M$ be a smooth map between manifolds (with boundary).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇ . Let $g : P \to M$ be a smooth map between manifolds (with boundary).

Definition 53: (1) The **pull back**, g^*E , of the bundle *E* is the vector bundle

$$g^*E = \coprod_{p \in P} E_{g(p)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where a trivialization $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ of E over $U \subset M$ induces a trivialization $\Phi_g : g^{-1}(\pi^{-1}(U)) \to g^{-1}(U) \times \mathbb{R}^k$ via $\Phi_g(e) = (p, \operatorname{pr}_{\mathbb{R}^k} \Phi(e))$

for $e \in (g^*E)_p$.

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇ . Let $g : P \to M$ be a smooth map between manifolds (with boundary).

Definition 53: (1) The **pull back**, g^*E , of the bundle *E* is the vector bundle

$$g^*E = \coprod_{p \in P} E_{g(p)}$$

where a trivialization $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ of E over $U \subset M$ induces a trivialization $\Phi_g : g^{-1}(\pi^{-1}(U)) \to g^{-1}(U) \times \mathbb{R}^k$ via $\Phi_g(e) = (p, \operatorname{pr}_{\mathbb{R}^k} \Phi(e))$

for $e \in (g^*E)_p$.

(2) The **pull back**, ∇^g , of the connection ∇ is given w.r.t. the trivialization by the connection 1-form

$$A^g_\Phi := g^* A_\Phi.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ∇^g is well–defined, i.e. independent of the local trivialization Φ of E.

 ∇^g is well–defined, i.e. independent of the local trivialization Φ of ${\it E}.$

Let $\gamma : [a, b] \to M$ be a smooth curve connecting $p = \gamma(a)$ and $q = \gamma(b)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 ∇^g is well–defined, i.e. independent of the local trivialization Φ of E.

Let $\gamma : [a, b] \to M$ be a smooth curve connecting $p = \gamma(a)$ and $q = \gamma(b)$.

Proposition 54: For any $v \in E_p$ there is a unique section $\sigma : [a, b] \to \gamma^* E$, with $\sigma(a) = v$ which is parallel:

 $\nabla^{\gamma}\sigma\equiv\mathbf{0}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Horizontal Tangent Spaces

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · のQ@