Differential Geometry II
 Connections of Vector Bundles

Klaus Mohnke

May 19, 2020

For two vectorbundles E, F over a manifold M we denote by

$$
\operatorname{Hom}(E, F):=E^{*} \otimes F
$$

the bundle of fibrewise homomorphism between them.

For two vectorbundles E, F over a manifold M we denote by

$$
\operatorname{Hom}(E, F):=E^{*} \otimes F
$$

the bundle of fibrewise homomorphism between them.
The fibre is given by

$$
\operatorname{Hom}(E, F)_{p}:=\operatorname{Hom}\left(E_{p}, F_{p}\right)=E_{p}^{*} \otimes F_{p}
$$

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.
Definition 49: A covariant derivative or connection, $\underline{\nabla}$, assigns to a smooth section $\sigma: M \rightarrow E$ and a tangent vector $X \in T_{p} M$ a vector $\left.\nabla_{X} \sigma \in E_{p}=\pi^{-}\right]_{p}$ such that for all smooth sections $\sigma, \tau: M \rightarrow E$ and functions $f: M \rightarrow \mathbb{R}$, tangent vectors $X, Y \in T_{p} M$ and $\lambda \in \mathbb{R}$

$$
\pi \cdot \sigma=i d_{M}
$$

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.
Definition 49: A covariant derivative or connection, ∇, assigns to a smooth section $\sigma: M \rightarrow E$ and a tangent vector $X \in T_{p} M$ a vector $\nabla_{X} \sigma \in E_{p}=\pi^{-}\left(\frac{\lambda_{\rho}}{\rho}\right)$ such that for all smooth sections $\sigma, \tau: M \rightarrow E$ and functions $f: M \rightarrow \mathbb{R}$, tangent vectors $X, Y \in T_{p} M$ and $\lambda \in \mathbb{R}$
(i) $\nabla_{X+\lambda Y} \sigma=\nabla_{X} \sigma+\lambda \nabla_{Y} \sigma \in E_{p}$

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.
Definition 49: A covariant derivative or connection, ∇, assigns to a smooth section $\sigma: M \rightarrow E$ and a tangent vector $X \in T_{p} M$ a vector $\nabla_{X} \sigma \in E_{p}=\pi^{-1}$ such that for all smooth sections $\sigma, \tau: M \rightarrow E$ and functions $f: M \rightarrow \mathbb{R}$, tangent vectors $X, Y \in T_{p} M$ and $\lambda \in \mathbb{R}$
(i) $\nabla_{X+\lambda Y} \sigma=\nabla_{X} \sigma+\lambda \nabla_{Y} \sigma$
(ii) $\nabla_{X}(\sigma+\tau)=\nabla_{X} \sigma+\nabla_{Y}$

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.
Definition 49: A covariant derivative or connection, ∇, assigns to a smooth section $\sigma: M \rightarrow E$ and a tangent vector $X \in T_{p} M$ a vector $\nabla_{X} \sigma \in E_{p}=\pi^{-1}$ such that for all smooth sections $\sigma, \tau: M \rightarrow E$ and functions $f: M \rightarrow \mathbb{R}$, tangent vectors $X, Y \in T_{p} M$ and $\lambda \in \mathbb{R}$
(i) $\nabla_{X+\lambda Y} \sigma=\nabla_{X} \sigma+\lambda \nabla_{Y} \sigma$

一) (ii) $\nabla_{X}(\sigma+\tau)=\nabla_{X} \sigma+\nabla_{Y} \sigma$
(iii) $\nabla_{X}(f \sigma)=X(f) \sigma(p)+f(p) \nabla_{X} \sigma$ (Leibniz' rule)

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.
Definition 49: A covariant derivative or connection, ∇, assigns to a smooth section $\sigma: M \rightarrow E$ and a tangent vector $X \in T_{p} M$ a vector $\nabla_{X} \sigma \in E_{p}=\pi^{-1}$ such that for all smooth sections $\sigma, \tau: M \rightarrow E$ and functions $f: M \rightarrow \mathbb{R}$, tangent vectors $X, Y \in T_{p} M$ and $\lambda \in \mathbb{R}$
(i) $\nabla_{X+\lambda Y} \sigma=\nabla_{X} \sigma+\lambda \nabla_{Y} \sigma$
(ii) $\nabla_{X}(\sigma+\tau)=\nabla_{X} \sigma+\nabla_{Y} \sigma$
(iii) $\nabla_{X}(f \sigma)=X(f) \sigma(p)+f(p) \nabla_{X} \sigma$ (Leibniz' rule)

Moreover, if X is smooth vector field on M, then $\nabla_{X} \sigma$ is a smooth section. $\nabla_{f x} \sigma=f \cdot \nabla_{x} \sigma$

The Covariant Derivative

Let Let $E \xrightarrow{\pi} M$ be a smooth vector bundle over a manifold M.
Definition 49: A covariant derivative or connection, ∇, assigns to a smooth section $\sigma: M \rightarrow E$ and a tangent vector $X \in T_{p} M$ a vector $\nabla_{X} \sigma \in E_{p}=\pi^{-1}$ such that for all smooth sections $\sigma, \tau: M \rightarrow E$ and functions $f: M \rightarrow \mathbb{R}$, tangent vectors $X, Y \in T_{p} M$ and $\lambda \in \mathbb{R}$
(i) $\nabla_{X+\lambda Y} \sigma=\nabla_{X} \sigma+\lambda \nabla_{Y} \sigma$
(ii) $\nabla_{X}(\sigma+\tau)=\nabla_{X} \sigma+\nabla_{Y} \sigma$
(iii) $\nabla_{X}(f \sigma)=X(f) \sigma(p)+f(p) \nabla_{X} \sigma$ (Leibniz' rule)

Moreover, if X is smooth vector field on M, then $\nabla_{X} \sigma$ is a smooth section.

A section $\sigma: M \rightarrow E$ satisfying $\nabla \sigma \equiv 0$ is called parallel section.

$$
\nabla_{x} \sigma=0 \quad \forall X \in T M
$$

The Covariant Derivative

Examples: (1) If $E=M \times \mathbb{R}^{k}$, i.e. the trivial bundle, $\sigma: M \rightarrow \mathbb{R}^{k}$ smooth defines a section and $X \in T_{p} M$:

$$
\nabla_{X} \sigma:=X(\sigma)=\left(d \sigma_{j}(X)\right)_{j=1}^{k}
$$

defines the trivial connection on E.

The Covariant Derivative

Examples: (1) If $E=M \times \mathbb{R}^{k}$, i.e. the trivial bundle, $\sigma: M \rightarrow \mathbb{R}^{k}$ smooth defines a section and $X \in T_{p} M$:

$$
\nabla_{X} \sigma:=X(\sigma)=\left(d \sigma_{j}(X)\right)_{j=1}^{k}
$$

defines the trivial connection on E.
$k=M\left(k, \Omega^{1}(M)\right)$
(2) Any $A \in \Omega^{1}(M, M(p ; \mathbb{R}))$ by

$$
\nabla_{X}^{A} \sigma:=X(\sigma)+A(X)(\sigma(p))
$$

defines a connection on the trivial bundle E.

The Covariant Derivative

Examples: (1) If $E=M \times \mathbb{R}^{k}$, i.e. the trivial bundle, $\sigma: M \rightarrow \mathbb{R}^{k}$ smooth defines a section and $X \in T_{p} M$:

$$
\nabla_{X} \sigma:=X(\sigma)=\left(d \sigma_{j}(X)\right)_{j=1}^{k}
$$

defines the trivial connection on E.
(2) Any $A \in \Omega^{1}(M, M(n ; \mathbb{R}))$ by

$$
\nabla_{X}^{A} \sigma:=X(\sigma)+A(X)(\sigma(p))
$$

defines a connection on the trivial bundle E.
(3) A connection ∇ on the tangent bundle $T M$ of a smooth manifold M is called an affine connection. If M is a Riemannian manifold and ∇ metric and torsion free, then it is the uniquely determined Levi Civita connection.

Induced Covariant Derivatives

Lemma 50: (1) Let ∇ be a connection on the vector bundle $E \xrightarrow{\pi} M$ over a manifold M. It induces a unique connection on the dual E^{*} via
for any smooth section $\alpha: M \rightarrow E^{*}, \sigma: M \rightarrow E, p \in M$ and $X \in T_{p} M$.

Induced Covariant Derivatives

Lemma 50: (1) Let ∇ be a connection on the vector bundle $E \xrightarrow{\pi} M$ over a manifold M. It induces a unique connection on the dual E^{*} via

$$
\nabla_{X}^{*} \alpha(\sigma(p)):=X(\alpha(\sigma))-\alpha_{p}\left(\nabla_{X} \sigma\right)
$$

for any smooth section $\alpha: M \rightarrow E^{*}, \sigma: M \rightarrow E, p \in M$ and $X \in T_{p} M$.
(2) Let ∇^{k} be connections on the vector bundles $\underset{E_{k} \xrightarrow{\pi_{k}} M}{ } M$ $(k=1,2)$. They induce a unique connection ∇^{\oplus} on $E_{1} \oplus E_{2}$ by

$$
\nabla_{X}^{\oplus}\left(\underline{\sigma_{1}, \sigma_{2}}\right)=\left(\nabla_{X}^{1} \sigma_{1}, \nabla_{X}^{2} \sigma_{2}\right)
$$

for any smooth sections $\sigma_{k}: M \rightarrow E_{k}, k=1,2$

Induced Covariant Derivatives

Lemma 50: (1) Let ∇ be a connection on the vector bundle $E \xrightarrow{\pi} M$ over a manifold M. It induces a unique connection on the dual E^{*} via

$$
\nabla_{X}^{*} \alpha(\sigma(p)):=X(\alpha(\sigma))-\alpha_{p}\left(\nabla_{X} \sigma\right)
$$

for any smooth section $\alpha: M \rightarrow E^{*}, \sigma: M \rightarrow E, p \in M$ and $X \in T_{p} M$.
(2) Let ∇^{k} be connections on the vector bundles $E_{k} \xrightarrow{\pi_{k}} M$ $(k=1,2)$. They induce a unique connection ∇^{\oplus} on $E_{1} \oplus E_{2}$ by

$$
\nabla_{X}^{\oplus}\left(\sigma_{1}, \sigma_{2}\right)=\left(\nabla_{X}^{1} \sigma_{1}, \nabla_{X}^{2} \sigma_{2}\right)
$$

for any smooth sections $\sigma_{k}: M \rightarrow E_{k}, k=1,2$
(3) They induce also a unique connection ∇^{\otimes} on $E_{1} \otimes E_{2}$ via

$$
\nabla_{X}^{\otimes}\left(\sigma_{1} \otimes \sigma_{2}\right)=\left(\nabla_{X}^{1} \sigma_{1}\right) \otimes \sigma_{2}(p)+\sigma_{1}(p) \otimes\left(\nabla_{X}^{2} \sigma_{2}\right)
$$

Induced Covariant Derivatives
Smooth
Proof: (3) Any'fiction $\sigma: M \rightarrow E_{1} \otimes E_{2}$ in givn:
$\forall p \in M \quad \exists \quad x<M$ pon, $p \in K$ \&
$\sigma_{1 j_{N}} h \rightarrow E_{1}, \sigma_{2 j}: h \rightarrow E_{2}$ suoth $j=1, \ldots, N$

$$
\sigma / h=\sum_{j=1}^{N} \sigma_{1 j} \otimes \sigma_{i j}
$$

(1) $E^{*}-1 \mu, \nabla^{k}$ duf. as done., $k:=o b E$ $p \in M, K \subset M$ qpo. $p \in L \& \Phi: \pi^{-1}(u)-1 U \times \mathbb{R}^{k}$ $\leadsto \sigma_{1}, \ldots, \sigma_{k}: u \rightarrow E / h$ sections, $\left\langle\sigma_{1}(x), \ldots, \sigma_{k}(x)\right\}<E_{x}$ $\nabla_{x}^{*} \propto \in E_{p}^{*}$ is uniguly atorind by its value on $\sigma_{2}(p), \ldots, \sigma_{k}(p)$

Induced Covariant Derivatives
Is satinfir the nguind conclition our U. \Rightarrow it is indepenatly defind of triviatization.

Reunark: Ther ar men such induad raunctia: l.g. $F<E$ is a rabvecterhunde of E. then ther ar insdenced carustion on F (eany) \& on the quatint E / F.

Splittings of $T E$

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma: B \rightarrow E$ a section.

Splittings of TE

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma: B \rightarrow E$ a section.

There is a natural splitting

$$
\begin{aligned}
T_{b} B
\end{aligned} T_{\sigma(b)}^{E_{b}} \cong T_{\sigma(b)} E .
$$

Splittings of TE

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma: B \rightarrow E$ a section.

There is a natural splitting

$$
\begin{aligned}
T_{b} B \oplus T_{\sigma(b)} F & \cong T_{\sigma(b)} E \\
(X, V) & \mapsto d_{b} \sigma(X)+V .
\end{aligned}
$$

A vector bundle $E \xrightarrow{\pi} M$ admits a canonical section, the zero section.

Splittings of TE

Let $E \xrightarrow{\pi} B$ be a smooth fibre bundle with fibre $F, \sigma: B \rightarrow E$ a section.

There is a natural splitting

$$
\begin{align*}
& T_{b} B \oplus T_{\sigma(b)} F \cong T_{\sigma(b)} E \\
&(X, V) \mapsto d_{b} \sigma(X)+V .
\end{align*}
$$

A vector bundle $E \xrightarrow{\pi} M$ admits a canonical section, the zero section.

Thus for $p \in M$

$$
T_{p} M \oplus E_{p} \cong \overbrace{d_{p}}^{d_{0_{p}} \pi}=\operatorname{Tos}^{-r} \int_{T_{p} M} \text { canonically }
$$

where $E_{p} \cong T_{0_{p}} E_{p}$. only at pains of Hero Sections

The Connection 1-Form

Definition 51: Let ∇ be a connection on a vector bundle $E \xrightarrow{\pi} M$ of rank $k, \Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ a smooth trivialization, $U \subset M$, open. Then

$$
\begin{aligned}
& A:=\Phi \circ \nabla \circ \Phi^{-1} \in \Omega^{1}(U, M(k, \mathbb{R})) . \\
& \text { ie. } \quad A(X)=\Phi \circ \nabla_{x^{\prime}} \circ \Phi^{-1}
\end{aligned}
$$

A is called the connection 1 -form of ∇ w.r.t. the trivialization Φ. for Lini-Ginta-Camection $D, \quad A=\sum \int_{k j}^{i} d x^{k}$

The Connection 1-Form

Definition 51: Let ∇ be a connection on a vector bundle $E \xrightarrow{\pi} M$ of rank $k, \Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ a smooth trivialization, $U \subset M$, open. Then

$$
\phi \circ \nabla \circ \phi^{-1}=\underset{d+A}{A}:=\left(\phi \circ \nabla \circ \Phi^{-1} \in \Omega^{1}(U, M(k, \mathbb{R})) .\right.
$$

A is called the connection 1 -form of ∇ w.r.t. the trivialization Φ.
Given a section $\sigma: U \rightarrow E$ we have $\in \mathcal{M}(d, \mathbb{R}) \in \mathbb{R}^{k}$

$$
\left.\mathbb{R}^{k} \ni \Phi\left(\nabla_{X} \sigma\right)=X(\Phi \circ \sigma)\right)+\widetilde{A(X)}(\overbrace{\Phi(\underbrace{\sigma(p)}_{\in E_{p}})})
$$

for any tangent vector $X \in T_{p} M$ or $M\left(\xi, \Omega^{\prime}(h)\right)$

$$
\text { or } d \circ \nabla \circ b^{-1}=d+A \Omega^{\prime}(u, E) \quad \text { on sloth maps } s: u \rightarrow R^{k} \text {. }
$$

The Connection 1-Form

Lemma 52: Given another trivialization $\left.\psi: \pi^{-1}(\nmid)\right\rangle \times \mathbb{R}^{k}$, and $\Psi \circ \Phi^{-1}:(U \cap V) \times \mathbb{R}^{k} \rightarrow(U \cap V) \times \mathbb{R}^{k}$ given by the transition function $g: U \cap V \rightarrow G /(\kappa, \mathbb{R}), \Psi \circ \Phi^{-1}(p, v)=(p, g(p) v)$.

The Connection 1-Form

Lemma 52: Given another trivialization $\Psi: \pi^{-1} \rightarrow V \times \mathbb{R}^{k}$, and $\Psi \circ \Phi^{-1}:(U \cap V) \times \mathbb{R}^{k} \rightarrow(U \cap V) \times \mathbb{R}^{k}$ given by the transition function $g: U \cap V \rightarrow G l(n ; \mathbb{R}), \Psi \circ \Phi^{-1}(p, v)=(p, g(p) v)$.

Then for the two connection 1-forms A_{Φ} and A_{Ψ} we have

$$
A_{\Phi}=g^{-1} d g+g^{-1} A_{\Psi} g .
$$

The Connection 1-Form
Lemma 52: Given another trivialization $\psi: \pi^{-1} \rightarrow V \times \mathbb{R}^{k}$, and $\Psi \circ \Phi^{-1}:(U \cap V) \times \mathbb{R}^{k} \rightarrow(U \cap V) \times \mathbb{R}^{k}$ given by the transition function $g: U \cap V \rightarrow G /(n ; \mathbb{R}), \Psi \circ \Phi^{-1}(p, v)=(p, g(p) v)$.

Then for the two connection 1-forms A_{Φ} and A_{Ψ} we have

$$
A_{\Phi}=g^{-1} d g+g^{-1} A_{\Psi} g . \quad
$$

ale
Proof: Recall (owe $u \cap V$) friction $\sigma: h \cap V \rightarrow E$

$$
\begin{aligned}
\nabla_{\sigma} & =4^{-1}\left(d+A_{4}\right)(4 \cdot \sigma)=\Phi^{-1}\left(d+A_{\Phi}\right)(\Phi \cdot \sigma) \\
& =4^{-1}\left(d+A_{4}\right)\left(\left(4 \cdot \Phi^{-I}\right) \cdot(\Phi \cdot \sigma)\right) \\
& =\Phi^{-1} \cdot\left(4 \cdot \Phi^{-2}\right)^{-1}\left(d+\Lambda_{4}\right)\left(\left(4 \cdot \sigma^{-1}\right) \cdot(\Phi \cdot \sigma)\right) \\
& =\Phi^{-1}\left(g^{1}-1\left(d+A_{4}\right) \cdot g\right)(\Phi \cdot \sigma) \\
& E \Phi^{-1}\left(d+\left(g^{-1} d g+J^{-1} A_{4} g\right)\right)(\Phi \cdot \sigma)
\end{aligned}
$$

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇. Let $g: P \rightarrow M$ be a smooth map between manifolds (with boundary).

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇. Let $g: P \rightarrow M$ be a smooth map between manifolds (with boundary).

Definition 53: (1) The pull back, $g^{*} E$, of the bundle E is the vector bundle

$$
g^{*} E=\coprod_{p \in P} E_{g(p)}
$$

where a trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ of E over $U \subset M$ induces a trivialization $\Phi_{g}: g^{-1}\left(\pi^{-1}(U)\right) \rightarrow g^{-1}(U) \times \mathbb{R}^{k}$ via

$$
\Phi_{g}(e)=\left(p, \operatorname{pr}_{\mathbb{R}^{k}} \Phi(e)\right)
$$

for $e \in\left(g^{*} E\right)_{p}$.

Pull-Backs

Denote by (E, ∇) a vector bundle of rank k over a manifold M equipped with a connection ∇. Let $g: P \rightarrow M$ be a smooth map between manifolds (with boundary).

Definition 53: (1) The pull back, $g^{*} E$, of the bundle E is the vector bundle

$$
g^{*} E=\coprod_{p \in P} E_{g(p)}
$$

where a trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ of E over $U \subset M$ induces a trivialization $\Phi_{g}: g^{-1}\left(\pi^{-1}(U)\right) \rightarrow g^{-1}(U) \times \mathbb{R}^{k}$ via

$$
\Phi_{g}(e)=\left(p, \operatorname{pr}_{\mathbb{R}^{k}} \Phi(e)\right)
$$

for $e \in\left(g^{*} E\right)_{p}$.
(2) The pull back, ∇^{g}, of the connection ∇ is given w.r.t. the trivialization by the connection 1-form

$$
A_{\Phi}^{g}:=g^{*} A_{\Phi}
$$

Parallel Transport

∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.

Parallel Transport

∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.

Let $\gamma:[a, b] \rightarrow M$ be a smooth curve connecting $p=\gamma(a)$ and $q=\gamma(b)$.

Parallel Transport

∇^{g} is well-defined, i.e. independent of the local trivialization Φ of E.

Let $\gamma:[a, b] \rightarrow M$ be a smooth curve connecting $p=\gamma(a)$ and $q=\gamma(b)$.

Proposition 54: For any $v \in E_{p}$ there is a unique section $\sigma:[a, b] \rightarrow \gamma^{*} E$, with $\sigma(a)=v$ which is parallel:

$$
\nabla^{\gamma} \sigma \equiv 0
$$

Parallel Transport

Horizontal Tangent Spaces

