Homework Set 10
 Floer Homology 2019

Problem 1

From the lecture:
(i) Prove that $\operatorname{ind}\left(L_{1}\right)=k_{-}-k_{+}$for the cases $k_{-} \equiv n \bmod 2, k_{+} \equiv(n-1) \bmod 2, k_{-} \equiv n-1$ $\bmod 2, k_{+} \equiv n \bmod 2$ and $k_{-} \equiv k_{+} \equiv(n-1) \bmod 2$.
(ii) Complete the proof of the index formula for the case $n=1$ and $k_{-} \neq 0$ or $k_{+} \neq 0$ and even. One way of doing it is to take the direct sum of the original L with $L^{\prime}=\partial_{s}+J_{0} \partial t+S^{\prime}$ where S^{\prime} is a small diagonal metric (whether definite or indefinite does not matter).

Problem 2

Functional analysis from lecture revisited.
Consider the operator $J_{0} \partial t: W^{1,2}\left(S^{1}, \mathbb{R}^{2 n}\right) \rightarrow L^{2}\left(S^{1}, \mathbb{R}^{2 n}\right)$
(i) Show that its image is given by

$$
\operatorname{im}\left(J_{0} \partial t\right)=\left\{\sigma \in L^{2}\left(S^{1}, \mathbb{R}^{2 n}\right) \mid \int_{S^{1}} \sigma(t) d t=0\right\}
$$

while its kernel consists of the constant maps. Deduce that this operator is Fredholm, with index $\operatorname{ind}\left(J_{0} \partial t\right)=0$
(ii) For $A=J_{0} \partial_{t}+S($.$) with smooth S: S^{1} \rightarrow \operatorname{Symm}(2 n)$ explain why A is Fredholm. What is its index?
(iii) Let S be non-degenerate. Show that A is an isomorphism.
(iv) Explain why A^{-1} has a discrete spectrum which accumulates with multiplicity only at 0.

Problem 3

Let $\left\{\lambda_{k}\right\}_{k \in \mathbb{Z} \backslash\{0\}}$ be the set of eigenvalues of A from Problem 2 (ordered, such that $\lambda_{k}>0$ iff $k>0$ and φ_{k} the corresponding system of eigenvectors, orthonormal w.r.t. the L^{2}-metric. Then $Y \in L^{2}$ iff

$$
Y=\sum_{k \in \mathbb{Z} \backslash\{0\}} y_{k} \varphi_{k}
$$

with the sequence of real numbers satisfying

$$
\sum_{k \in \mathbb{Z} \backslash\{0\}}\left|y_{k}\right|^{2}<\infty
$$

$(i)^{*}$ Show that $Y \in W^{1,2}$ iff

$$
\sum_{k \in \mathbb{Z} \backslash\{0\}} \lambda_{k}^{2}\left|y_{k}\right|^{2}<\infty
$$

(ii) Show that for $L=\partial_{s}+A: W^{1,2}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \rightarrow L^{2}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) \operatorname{Ker} L=0$ (see lecture)
(iii) For $Z \in L^{2}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right) Z(s, t)=\sum_{k \in \mathbb{Z} \backslash\{0\}} z_{k}(s) \varphi_{k}(t)$ we constructed

$$
y_{k}(s):=\int_{-\infty}^{s} e^{\lambda_{k}\left(s^{\prime}-s\right)} z_{k}\left(s^{\prime}\right) d s^{\prime}
$$

for $\lambda_{k}>0$ and

$$
y_{k}(s):=-\int_{s}^{\infty} e^{\lambda_{k}\left(s^{\prime}-s\right)} z_{k}\left(s^{\prime}\right) d s^{\prime}
$$

for $\lambda_{k}<0$. Show that $Y(s, t):=\sum_{k \in \mathbb{Z} \backslash\{0\}} y_{k}(s) \varphi(t)$ defines an element in $L^{2}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)$.
(iv) Show that Y from (iii) is an element of $W^{1,2}\left(\mathbb{R} \times S^{1} ; \mathbb{R}^{2 n}\right)$. Using this, conclude that $D Y=Z$.

Problem 4

Motivational functional analysis for the proof of property (1) of Fredholm operators.
Let B_{0} be a Banach space of infinite dimension. Let $\alpha: B_{0} \rightarrow \mathbb{R}$ be linear. Equip $B=B_{0} \oplus \mathbb{R}$ with the product norm which turns N into a Banach space. The graph of $\alpha, \Gamma:=\left\{\left(v, \alpha(v) \mid v \in B_{0}\right\} \subset B\right.$, is a linear subspace of codimension 1: $\Gamma+(\{0\} \times \mathbb{R})=B$ and $\Gamma \cap(\{0\} \times \mathbb{R})=\{0\}$.
(i) Show that Γ is closed iff α is continuous.
(ii) Construct an example of a Banach space B_{0} and a linear map $\alpha: B_{0} \rightarrow \mathbb{R}$ which is not continuous.
(iii) Wonder about it. ©

