Homework Set 10

Floer Homology 2019

Problem 1

From the lecture:

(i) Prove that $\operatorname{ind}(L_1) = k_- - k_+$ for the cases $k_- \equiv n \mod 2, k_+ \equiv (n-1) \mod 2, k_- \equiv n-1 \mod 2, k_+ \equiv n \mod 2$ and $k_- \equiv k_+ \equiv (n-1) \mod 2$.

(ii) Complete the proof of the index formula for the case n = 1 and $k_{-} \neq 0$ or $k_{+} \neq 0$ and even. One way of doing it is to take the direct sum of the original L with $L' = \partial_s + J_0 \partial t + S'$ where S' is a small diagonal metric (whether definite or indefinite does not matter).

Problem 2

Functional analysis from lecture revisited. Consider the operator $J_0\partial t: W^{1,2}(S^1, \mathbb{R}^{2n}) \to L^2(S^1, \mathbb{R}^{2n})$ (i) Show that its image is given by

$$\operatorname{im}(J_0\partial t) = \{\sigma \in L^2(S^1, \mathbb{R}^{2n}) \mid \int_{S^1} \sigma(t)dt = 0\}$$

while its kernel consists of the constant maps. Deduce that this operator is Fredholm, with index $ind(J_0\partial t) = 0$

(ii) For $A = J_0 \partial_t + S(.)$ with smooth $S: S^1 \to \text{Symm}(2n)$ explain why A is Fredholm. What is its index?

(iii) Let S be non-degenerate. Show that A is an isomorphism.

(iv) Explain why A^{-1} has a discrete spectrum which accumulates with multiplicity only at 0.

Problem 3

Let $\{\lambda_k\}_{k\in\mathbb{Z}\setminus\{0\}}$ be the set of eigenvalues of A from Problem 2 (ordered, such that $\lambda_k > 0$ iff k > 0and φ_k the corresponding system of eigenvectors, orthonormal w.r.t. the L^2 -metric. Then $Y \in L^2$ iff

$$Y = \sum_{k \in \mathbb{Z} \setminus \{0\}} y_k \varphi_k$$

with the sequence of real numbers satisfying

$$\sum_{k\in\mathbb{Z}\setminus\{0\}}|y_k|^2<\infty.$$

 $(i)^*$ Show that $Y \in W^{1,2}$ iff

$$\sum_{k\in\mathbb{Z}\setminus\{0\}}\lambda_k^2|y_k|^2<\infty.$$

(ii) Show that for $L = \partial_s + A : W^{1,2}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) \to L^2(\mathbb{R} \times S^1; \mathbb{R}^{2n})$ KerL = 0 (see lecture) (iii) For $Z \in L^2(\mathbb{R} \times S^1; \mathbb{R}^{2n})$ $Z(s,t) = \sum_{k \in \mathbb{Z} \setminus \{0\}} z_k(s)\varphi_k(t)$ we constructed

$$y_k(s) := \int_{-\infty}^s e^{\lambda_k(s'-s)} z_k(s') ds'$$

for $\lambda_k > 0$ and

$$y_k(s) := -\int_s^\infty e^{\lambda_k(s'-s)} z_k(s') ds'$$

for $\lambda_k < 0$. Show that $Y(s,t) := \sum_{k \in \mathbb{Z} \setminus \{0\}} y_k(s)\varphi(t)$ defines an element in $L^2(\mathbb{R} \times S^1; \mathbb{R}^{2n})$. (iv) Show that Y from (iii) is an element of $W^{1,2}(\mathbb{R} \times S^1; \mathbb{R}^{2n})$. Using this, conclude that DY = Z.

Problem 4

Motivational functional analysis for the proof of property (1) of Fredholm operators.

Let B_0 be a Banach space of infinite dimension. Let $\alpha : B_0 \to \mathbb{R}$ be linear. Equip $B = B_0 \oplus \mathbb{R}$ with the product norm which turns N into a Banach space. The graph of $\alpha, \Gamma := \{(v, \alpha(v) \mid v \in B_0\} \subset B,$ is a linear subspace of codimension 1: $\Gamma + (\{0\} \times \mathbb{R}) = B$ and $\Gamma \cap (\{0\} \times \mathbb{R}) = \{0\}$.

(i) Show that Γ is closed iff α is continuous.

(ii) Construct an example of a Banach space B_0 and a linear map $\alpha : B_0 \to \mathbb{R}$ which is not continuous.

(iii) Wonder about it. \odot