Homework Set 4

Floer Homology 2019

Problem 1

- (a) Sketch a Morse function and (the flow of) a gradient-like vector field on the 2-torus, Klein bottle, real projective plain using the combinatorial description of these spaces.
- (b) How can one see in (a) whether the vector field is Morse-Smale? Determine the Morse-Smale-Witten complex and compute its homology in this case.

Problem 2

- (a) Recall the definition of the projective space $\mathbb{C}P^n$.
- (b) Fix real numbers $a_0 < a_1 < ... a_n$. Show that the function

$$f(z_0,...,z_n) := \frac{a_0|z_0|^2 + a_1|z_1|^2 + ... + a_n|z_n|^2}{|z_0|^2 + |z_1|^2 + ... + |z_n|^2}$$

defines a Morse function on $\mathbb{C}P^n$. Determine all its critical points and their Morse indices. What does it mean for its homology?

 $(c)^*$ Can you sketch the arguments leading to the Morse-Smale-Witten chain complex for a similar function on $\mathbb{R}P^n$ and an appropriate gradient-like vector field?

Problem 3

- (a) Recall the notion of a chain map of chain complexes. Show that it induces a map of homologies.
- (b) Recall the notion of a chain homotopy between chain maps. Show that chain homotopic chain maps induce the same homomorphisms between homologies.
- (c) In the lecture it is claimed that for any two Morse-Smale pairs (f_k, X_k) k = 0, 1 to a homotopy $\{(f_t, X_t)\}_{t \in [0,1]}$ between them which satisfies another Morse-Smale condition one can assign a chain map between their Morse-Smale-Witten complexes with the following properties: (i) Any two such chain maps are chain homotopic. (ii) For three Morse-Smale pairs (f_k, X_k) $k \in \{0; 1; 2\}$ and Morse-Smale homotopies $\{(f_t, X_t)\}_{t \in [0,1]}$ and $\{(f_t, X_t)\}_{t \in [1,2]}$ between them there is a Morse-Smale homotopy $\{(g_t, Y_t\}_{t \in [0,1]} \text{ with } (g_0, Y_0) = (f_0, X_0) \text{ and } (g_1, Y_1) = (f_2, X_2) \text{ whose assigned chain map coincides with the composition of the chain maps assigned to the two former homotopies.}$

Show that this implies that for any two Morse-Smale pairs $(f_0, X_0), (f_1, X_1)$ there is a unique isomorphism of the homologies of their assigned Morse-Smale-Witten complexes.

Problem 4

- (a) Determine the Hessian of the Hamiltonian action functional \mathcal{A}_{H_t} at a critical point. This was discussed in the lecture.
- (b) Show that this Hessian is of the following form: If $\gamma:[0,1]\to M$ with $\gamma(0)=\gamma(1)$ is a solution of $\gamma'(t)=X_{H_t}(\gamma(t))$, i.e. a critical point of \mathcal{A}_{H_t} then w.r.t. a trivialization of the symplectic vector bundle $\gamma^*TM\cong[0,1]\times(\mathbb{R}^{2n},\omega_0)$ (coinciding at 0 and 1), the Hessian takes the form

$$H := \mathrm{Hess}_p(\xi, \eta) = \int_0^1 \langle \mathrm{i} \xi'(t) - S(t) \xi(t), \eta(t) \rangle dt$$

where ω_0 denotes the standard symplectic form, i denotes the complex multiplication after identifying $\mathbb{R}^{2n} \cong \mathbb{C}^n$ in such a way that $\langle v, iw \rangle = -\omega_0(v, w)$ and $S : [0, 1] \to M(2n, \mathbb{R})$ is a periodic family of symmetric matrices. The vector fields ξ, η along γ are treated as 1-periodic maps $\xi, \eta : [0, 1] \to \mathbb{R}^{2n}$ using the trivialisation.

- (c) Show for an arbitrary family S as in (b), that the bilinear form is symmetric, i.e. do not use that it was the Hessian of A_{H_t} at a critical point.
- (d) Explain, why $\{\dim V \mid V \subset C^1_{\mathrm{per}}([0,1], \hat{\mathbb{R}}^{2n}), H|_V \text{ is negative definite } \}$ is unbounded and likewise for replacing "negative definite" by "positive definite". Hint: What are (the) eigenfunctions if $\xi \mapsto \mathrm{i} \xi'(t)$? Take H to be the span of an appropriate set of such eigenfunctions.