Homework Set 5

Floer Homology 2019

Problem 1

Let ω be the volume form on the unit sphere $S^2 \subset \mathbb{R}^3$ and $H_a: S^2 \to \mathbb{R}$ be the function: h(x,y,z) = az.

- (a) Determine the value of the Hamiltonian action for the circles with constant z-coordinate.
- (b) Determine all critical points of the corresponding Hamiltonian action functional. (c) For which values of a are all critical points non-degenerate? Determine the Conley-Zehnder indices of the stationary critical points with the trivial spanning disc in this case.

Problem 2

Show that the following two families $A, B : [0,1] \to M(2,\mathbb{R})$ are families of symplectic matrices which meet the conditions $A(0) = B(0) = \mathbb{E}$ and the endpoints do not have eigenvalue 1. Determine their Conley–Zehnder indices.

(a)

$$A(t) = \begin{pmatrix} 1 + 4\pi^2 t^2 & 2\pi t \\ 2\pi t & 1 \end{pmatrix}$$

(b)

$$B(t) = \begin{pmatrix} 1 - 4\pi^2 t^2 & -2\pi t \\ 2\pi t & 1 \end{pmatrix}$$

Remark: (b) is more subtle.

Problem 3

Show that for two paths $A, B : [0,1] \to M(k,\mathbb{R})$ where $A(0) = B(0) = B(1) = \mathbb{E}$ the pointwise products $BA, AB : [0,1] \to M(k,\mathbb{R}), \ AB(t) = A(t)B(t)$ of the two are both homotopic to the concatenation $B \cdot A : [0,1] \to M(k,\mathbb{R})$

$$B \cdot A(t) := \begin{cases} B(2t) & \text{for } t \in [0, \frac{1}{2} \\ A(2t-1) & \text{for } t \in [\frac{1}{2}, 1] \end{cases}.$$

Problem 4

- (a) Let J_0 be the standard complex structure on \mathbb{R}^{2n} as introduced in class and S be symmetric $2n \times 2n$ -matrix. Show that $\exp(J_0S)$ is a symplectic matrix with respect to the symplectic form which in the standard basis is given by J_0 .
- (b) More generally, show that for a 1-parameter family S(t) of symmetric matrices a family R(t) of matrices solving

$$R'(t) = J_0 S(t) R(t), \quad R(0) = \mathbb{E}$$

is symplectic. Vice versa, if R(t) is a family of symplectic matrices starting at \mathbb{E} and solving ten equation, then S(t) is symmetric for all t.

Problem 5

Given a symplectic form ω on a vector space V and a euclidean scalar product g, by the condition

$$\omega(v, Aw) = g(v, w)$$

 $A:V\to V$ is a uniquely defined endomorhism. A^2 is symmetric w.r.t. the scalar product and negative definite. Hence the square root of $-A^2$ is defined and $J:=\sqrt{-A^2}^{-1}A$ is a compatible almost complex structure.