Homework Set 8
 Floer Homology 2019

The following three problems are intended to inspire a discussion. The goal is to understand how to approach these questions. We will thus not present "complete" solutions.

Problem 1

(i) Repeat the definition of Sobolev mappings/functions and their basic properties: embedding into C^{k}-spaces (when is it compact?), products of Sobolev functions.
(ii) The following fact is useful for the next problems.

Let $U \subset \mathbb{R}^{m}$ be an open set, $F: U \rightarrow \mathbb{R}^{n}$ be a smooth map. Let $C>0, p>2$. Show that F induces a map $F: W^{1, p}\left([-C, C] \times S^{1}, U\right) \rightarrow W^{1, p}\left([-C, C] \times S^{1}, \mathbb{R}^{n}\right)$ defined by composition u mapstoF $\circ u$. Moreover, this map is smooth.

Problem 2

Let (M, g) be a closed Riemannian manifold. Denote by $\exp _{p}: T_{p} \rightarrow M$ the exponential map, $p \in M$.
(i) Let $u \in W^{1, p}\left([-C, C] \times S^{1}, M\right)$ and $\xi \in W^{1, p}\left([-C, C] \times S^{1}, u^{*} T M\right)$. We define $\exp _{u}(\xi)$: $[-C, C] \times S^{1} \rightarrow M$ by

$$
\exp _{u}(\xi)(s, t):=\exp _{u(s, t)}(\xi(s, t))
$$

Show that $\exp _{u}(\xi)(s, t) \in W^{1, p}\left([-C, C] \times S^{1}, M\right)$ and that for $\epsilon>0$ small enough the restriction

$$
\exp _{u}: B_{\epsilon} \rightarrow W^{1, p}\left([-C, C] \times S^{1}, M\right)
$$

for the ball $B_{\epsilon} \subset W^{1, p}\left([-C, C] \times S^{1}, T^{*} M\right)$ is a 1-1 smooth map onto an open neighbourhood U_{u} of $u \in W^{1, p}\left([-C, C] \times S^{1}, M\right)$.
(ii) The goal is to show that the maps of (i) define a smooth atlas which turn $W^{1, p}\left([-C, C] \times S^{1}, M\right)$ into a smooth Banach manifold. One way could be to show that for $u, v \in\left([-C, C] \times S^{1}, M\right)$ on the open subset $\exp _{u}^{-1}\left(U_{u} \cap U_{v}\right)$ the composition $\exp _{v} \circ \exp _{u}^{-1}$ is differentiable.
(iii) Alternatively, one could proceed as follows. Let $M \subset \mathbb{R}^{N}$ be a smooth embedding, $V \subset \mathbb{R}^{N}$ a tubular neighborhood of M and $p: V \rightarrow M$ be a differentiable map such that $\left.p\right|_{M}=\mathrm{id}_{M}$. Show that

$$
\exp _{u}^{-1} \circ p: p^{-1}\left(U_{u}\right) \subset W^{1, p}\left([-C, C] \times S^{1}, \mathbb{R}^{N}\right) \rightarrow\left([-C, C] \times S^{1}, T^{*} M\right)
$$

is differentiable.
(iv) Show that the space of maps $\mathcal{B}^{p}(x, y):=W^{1, p}\left(\mathbb{R} \times S^{1}, M\right)$ consisting of $u: \mathbb{R} \times S^{1} \rightarrow M$ which are in $u \in W_{l o c}^{1, p}$ and that $\lim _{s \rightarrow-\infty} u(s,)=x:. S^{1} \rightarrow M$ and $\lim _{s \rightarrow-\infty} u(s,)=y:. S^{1} \rightarrow$ M such that for $C>0$ sufficiently large $\exp _{x}^{-1}\left(\left.u\right|_{(-\infty,-C])} \in W^{1, p}\left((-\infty,-C], x^{*} T M\right)\right.$ and $\left.\exp _{y}^{-1}\left(\left.u\right|_{[} C, \infty\right)\right) \in W^{1, p}\left([C, \infty), y^{*} T M\right)$ for given smooth maps x, y is a Banach manifold. x, y are not necessarily periodic solutions of Hamilton's equation.

Problem 3

Let U_{u} be as in Problem 1. For $v=\exp _{u}(\xi) \in U_{u}, \xi \in W^{1, p}\left([-C, C] \times S^{1}, u^{*} T M\right)$ denote by $P_{u, v}$: $u^{*} T M \rightarrow v^{*} T M$ the parallel transport along the family of geodesics $\left\{\tau \mapsto \exp _{u(s, t)}(\tau \xi(s, t))\right\}_{s, t}$. Then this defines a continuous linear map $P_{u, v}: L^{p}\left(u^{*} T M\right) \rightarrow L^{p}\left(v^{*} T M\right)$ and via $U_{u} \times\left. L^{p}\left(u^{*} T M\right) \stackrel{\cong}{\rightrightarrows} \mathcal{E}\right|_{U_{u}}$ given by $(u, \eta) \rightarrow P_{u, v}(\eta)$ a trivialization of the bundle \mathcal{E}. Show that the transition maps of this trivialization depend smoothly on the base point.

