Homework Set 9

Floer Homology 2019

Problem 1

(i) With u, v, ξ as in Problem 3 of Set 8 show that

$$\frac{\partial}{\partial \tau}|_{\tau=0} P_{u,\exp_u(\tau\xi)}^{-1}(\frac{\partial}{\partial s} \exp_u(\tau\xi)) = \nabla_s^u \xi$$

where the covariant derivative ∇^u on u^*TM is the pull-back of the Levi-Civita connection.

(ii) Derive the following formula:

$$D_u \overline{\partial}_{H,J} \xi := \frac{\partial}{\partial \tau}|_{\tau=0} P_{u,\exp_u(\tau\xi)}^{-1}(\overline{\partial}_{H,J} \exp_u(\tau\xi)) = \nabla_s^u \xi + (J \circ u)(\nabla_t^u \xi - \nabla_\xi X_H) + (\nabla_\xi J \circ u)(\partial_t u - X_H).$$

(iii) Let $u \in \mathcal{B}^p(x,y)$ and x and y are periodic solutions of Hamilton's equation. Show that after (suitable?) trivialization $u^1 * TM \cong \mathbb{R} \times S^1 \times \mathbb{C}^n$ as complex vector bundles the linear operator in (ii) takes the form

$$D_u \overline{\partial}_{H,J} \xi(s,t) = \frac{\partial \xi}{\partial_s}(s,t) + J_0 \frac{\partial \xi}{\partial_t}(s,t) + S(s,t) \xi(s,t)$$

where J_0 denotes the multiplication by i, $S: \mathbb{R} \times S^1 \to M(2n, \mathbb{R})$ with the identification $\mathbb{C}^n \cong \mathbb{R}^{2n}$. Moreover, $\lim_{s \to \pm \infty} S(s,t) = S^{\pm}(t)$ uniformly in t and the solutions $R^{\pm}: [0,1] \to M(2n; \mathbb{R})$ of $\dot{R}^{\pm} = J_0 S^{\pm}(t) R^{\pm}(t)$ define paths of symplectic matrices conjugate to the linearizations of the Hamiltonian flow Φ_t at x(0) and y(0). In particular, if x and y are non-degenerate, then $1 \notin \operatorname{spec}(R^{\pm}(1))$.

Problem 2

Remember the definitions $\mathbb{E} := \mathcal{E} \times \mathcal{J}$, $\mathbb{B} := \mathcal{B} \times \mathcal{J}$ and recall the section $\overline{\partial}_H(u,J) := \overline{\partial}_{H,J}u$ of the obvious bundle $\mathbb{E} \to \mathbb{B}$. Then we defined $\mathbb{M} := \overline{\partial}_H^{-1}(0)$ and the differentiable map $\pi : \mathbb{M} \to \mathcal{J}$ given by $\pi(u,J) = J$. Let $(u,J) \in \mathbb{M}$.

- (i) Show that $\operatorname{Ker} D_{u,J} \pi \cong \operatorname{Ker} D_u \overline{\partial}_{H,J}$
- (ii) Construct an isomorphism $\operatorname{Coker}(D_{u,J}\pi) \cong \operatorname{CoKer}(D_u\overline{\partial}_{H,J})$
- (iii) Discuss the connection between the Fredholm property of $D_u \overline{\partial}_{H,J}$ and of $D_{u,J}\pi$ and the relation of their indices.
- (iv) What can be concluded if $D_{u,J}\pi$ is surjective?

Problem 3

- (i) Let $L: E \to F$ be a bounded linear map. Show: If there is a bounded linear map $L': F \to E$ such that $LL' \mathrm{id}_F$ and $L'L \mathrm{id}_E$ are finite-dimensional, then L is Fredholm.
- (ii) Let $v \in E$. Find an example of a subspace $E_0 \subset E$ such that $E = E_0 \oplus \mathbb{R}v$ algebraically but E_0 is not closed or prove the opposite statement.
- (iii) Let $L, L_0 : E \to F$, and $L_0 : F \to E$ as in (i) for L_0 instead of L. Suppose $||L L_0|| < \frac{1}{||L_0'||}$. Explain why $(\mathrm{id}_F + (L L_0)L_0')^{-1}$ and $(\mathrm{id}_E + L_0'(L L_0))^{-1}$ exist. Moreover, deduce that $L' := L_0'(\mathrm{id}_F + (L L_0)L_0')^{-1}$ satisfies (i) for L.

Problem 4

- (i) Let $H: S^2 \to \mathbb{R}$ be the height function with exactly two critical points: minimum x and maximum y. The Hamiltonian flow is simply given by rotation of S^2 , the time-one map is the rotation whose size is determined by H and the symplectic form ω (the volume form). For all but a discrete set of c's the only 1-periodic solutions to Hamilton's equation fro cH are the stationary x and y. If c>0 and sufficiently small the Conley-Zehnder index of x is $\mu(x)=-1$ and $\mu(y)=1$. This changes for c<= and c>0 and large. How does this fit with claimed invariance of Floer homology from the data given.
- (ii) Let $f: T^2 \to \mathbb{R}$ be a Morse function with exactly one maximum x, two non-extremal critical points y_1, y_2 and one minimum z. How do the Conley-Zehnder indices of these considered as 1–periodic solutions of Hamilton's equation for cf change for varying c? What does it mean for teh Hamiltonian system?