Übungsblatt 11

Geometrie WS 2018/19

Abgabe: 23.1.2018

Aufgabe 1 (3+3+3) Punkte

- (a) Sei ein Dreieck $\Delta(A, B, C)$ mit den Seitenlängen |AB| = 4, |BC| = 5, |AC| = 6 gegeben. Berechnen Sie Sinus und Kosinus der Innenwinkel, den Flächeninhalt, sowie den Inkreis-und Umkreisradius des Dreiecks.
- (b) Bestimmen Sie die Längen der Seitenhalbierenden s_a eines Dreiecks aus gegebenen Seitenlängen b,c und Innenwinkel α .
- (c) Berechnen Sie s_a aus den Seitenlängen a, b, c des Dreiecks.

Aufgabe 2 (3+2+2) Punkte

- (a) Sei der Wert $\sin x = a \in \mathbb{R}$ gegeben. Bestimmen Sie alle theoretisch möglichen Werte von $\sin(\frac{x}{2})$ als Ausdruck von a.
- (b) Leiten Sie die Werte für $\cos(\pi/6)$, $\sin(\pi/6)$ geometrisch aus der Definition der Winkelfunktionen her.
- (c) Bestimmen Sie $\cos(\pi/12)$ und $\sin(\pi/12)$ mithilfe der Additionstheoreme. Begründen Sie dabei jeden Ihrer Schritte.

Aufgabe 3 (7 Punkte)

Gegeben seien drei Strecken mit paarweise verschiedenen Längen h, w bzw. s. Konstruieren Sie mithilfe von Zirkel und Lineal ein Dreieck $\Delta(A, B, C)$ dessen Höhe von C auf AB die Länge h, dessen Seitenhalbierende von C die Länge s und für das die Strecke CD die Länge w besitzt, wobei D der Schnittpunkt der Winkelhalbierenden des Innenwinkels in C mit AB ist. Leiten Sie die Konstruktion her, beschreiben Sie diese und erläutern Sie Durchführbarkeit und Korrektheit.

Aufgabe 4 (5 + 2 Punkte)

Für diese Aufgabe sei das Parallelenaxiom nicht vorausgesetzt.

- (a) Zeigen Sie, dass Punktspiegelungen in der Ebene Isometrien sind.
- (b) Weisen Sie nach, dass die Verknüpfung von zwei verschiedenen Punktspiegelungen fixpunktfrei ist.

- a) Wiederholen Sie die in der Vorlesung behandelten trigonometrischen Formeln, wie z.B. den Sinus-Satz, den Kosinus-Satz, die Heronsche Formel usw.
- b) Wiederholen Sie die Additionstheoreme für die Winkelfunktionen Sinus und Kosinus.

Folgende Beispielaufgaben können in den Übungen am 14.1.–17.1. besprochen werden:

- c) Für ein Dreieck $\Delta(A, B, C)$ sei $|\angle(BAC)| = \pi/6$, |AC| = 1 und |AB| = 2. Bestimmen Sie die Länge der dritten Seite sowie den Sinus der beiden anderen Innenwinkel.
- d) Bestimmen Sie die Längen der Seitenhalbierenden s_a eines Dreiecks aus gegebenen Seitenlängen b,c und Innenwinkel α . Können Sie dies auch aus den Seitenlängen a,b,c berechnen?
- e) Leiten Sie die exakten Werte von $\sin(\pi/10)$ und $\cos(\pi/10)$ her. Dabei ist nicht die angenäherte Dezimaldartstellung gesucht sondern ein algebraischer Ausdruck der Form $a+b\sqrt{c}$ mit $a,b,c\in\mathbb{Q}$ und Iterationen davon, d.h. a,b,c sind von der vorigen Form usw. Begründen Sie jeden Schritt bei Ihrer Herleitung. Hinweis: Das "Goldende Dreieck" ist hier nützlich.
- f) Geben Sie Formeln für $\sin(2x)$, $\sin(3x)$, $\cos(2x)$, $\cos(3x)$ in Termen von $\sin x$ und $\cos x$ an.
- g) Bestimmen Sie die exakten Werte von $\sin(\pi/20)$ und $\cos(\pi/20)$.
- h) Gegeben seien zwei Strecken mit Längen h und s sowie ein Winkel der Größe γ . Konstruieren Sie mithilfe von Zirkel und Lineal ein Dreieck $\Delta(A,B,C)$ dessen Höhe von C auf AB die Länge h, dessen Seitenhalbierende von C die Länge s und dessen Innenwinkel in C das Maß γ hat. Leiten Sie die Konstruktion her, beschreiben Sie diese und erläutern Sie Durchführbarkeit und Korrektheit. Tipp: Verdoppeln Sie die Seitenhalbierende über den Mittelpunkt der Seite hinaus und verbinden Sie den neuen Punkt mit A und B. Was wissen wir über dieses Parallelogramm?