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Abstract

Given a time-dependent Hamiltonian system whose periodic orbits
are non-degenerate, we define the Conley-Zehnder index of a critical
points of its symplectic action functional. As shown previously, the
linearisation of the Floer map is a Fredholm operator; we compute its
Fredholm index (which is a difference of Conley-Zehnder indices).

1 Context and motivation

The motivation for this talk is twofold.

The first line of support comes from analogy to Morse theory, as much of
this course is devoted to generalising the methods of Morse theory to the
infinite-dimensional setting. We recall that Morse homology of Morse-Smale
system was defined via the Morse-Smale-Witten complex, consisting of free
modules over the non-degenerate critical points. In particular, we needed a
grading of critical points which was provided via their Morse index. We will
also need such a grading for defining Floer homology. Hence, we would like
to assign an index to each critical point of our action functional.

The second line of motivation comes from our context within the program
of defining Floer homology: given a time-dependent Hamiltonian system,
we considered its non-degenerate 1-periodic orbits, which are exactly the
critical points of symplectic action functional. We defined a metric on its
domain (which was the space of contractible loops) and then considered the
negative gradient flow given by the action functional. Its defining equation
is the Floer equation. We were investigating whether its solution set is a
finite-dimensional manifold.

This will be completed in the next talk (the previous talk proved major
parts): for generic pairs (H,.J), we will have proved that the moduli space



M (x,y; H, J) of finite-energy solutions connecting the periodic orbits = and
y is a finite-dimensional manifold.

The basic approach was to regard the moduli space as the zero set of
the Floer map F between infinite-dimensional Banach spaces and use the
implicit function theorem. Checking its hypotheses, we need to show that
the linearisation dF of F is surjective and has a bounded right inverse. We
just finished the proof that dF is a Fredholm operator. The last step will be
to apply the Sard-Smale theorem, which basically proves that the hypotheses
are satisfied for generic (H,J).

With today’s talk, first of all, we follow our Pavlov reflex (“given a Fredholm
operator, can we determine its index?”). Secondly, we are computing the
dimension of the moduli space: by the implicit function theorem, we have
dim M(x,y; H,J) = dimker dF. Since the linearisation is surjective, this
equals the Fredholm index of the linearisation.

2  Outline

Accordingly, this talk has two parts. We begin by assigning an index to each
non-degenerate critical point of our action functional, the Conley-Zehnder
index. Then, we compute the Fredholm index of dF which equals the
dimension of the moduli space M(z,y; H,J). In analogy to Morse theory,
we expect this to be the difference of the orbits’ indices u(y) — p(z).

This will be true if the underlying closed symplectic manifold (M,w) is
aspherical, i.e., that [ u*w = 0 for all smooth maps u: S? — M. If this
is not the case, the dimension of the moduli space near a solution u also
depends on the energy of u!

For defining the Conley-Zehnder index, we assign to each non-degenerate
1-periodic orbit x of our Hamiltonian system a path in the symplectic group,
the group formed by all symplectic matrices, and determine the index from
that. (Recall that the Hamiltonian flow preserves the symplectic form, in
coordinates, such maps are exactly given by symplectic matrices.) Since we
will use quite a few properties of this group, we will start by discussing these.

All material in this document is classical. All material in this document is
taken from [Sal99] and [AD14], with the background about the symplectic
group being only found in [AD14]. We also found it helpful to consult [MS17]
regarding the properties of the symplectic group.



3 Symplectic matrices and their properties

3.1 Basic definitions and subgroups

We are given our symplectic manifold (M,w) and want to study maps
preserving this symplectic form in coordinates, i.e. locally. By Darboux’
theorem, every symplectic manifold locally looks with R?" with standard
symplectic form, hence it suffices to consider that.

Let (R*,w) be the standard symplectic space. Denote the standard complex

structure by Jy; this corresponds to the 2n x 2n-matrix Jy = <10d _OI d)‘

Definition 3.1. A linear map g: R*™ — R?" s called symplectic iff it
satisfies
w(gZ,9Z") =w(Z,Z")  forall Z,7' € R*".

Observe that g is symplectic iff its matriz A in the standard basis satisfies
Al JgA = Jy.

Definition 3.2. A real 2n x 2n-matriz A € M (2n;R) is called symplectic
iff it satisfies A'JoA = Jg.

Proposition 3.3. The set Sp(2n) of all symplectic 2n x 2n-matrices forms
a subgroup of M (2n;R) called the symplectic group. O

The symplectic group has a few noteworthy relations with other matrix Lie
groups. We consider the groups O(2n) of orthogonal real 2n x 2n-matrices,
GL(n, C) of invertible complex n x n matrices and U(n) of unitary matrices
as subgroups of GL(2n,R).

Proposition 3.4. We have the equalities

Sp(2n) N O(2n) = Sp(2n) N GL(n,C) = O(2n) N GL(n,C) = U(n).
Proof. is skipped since just routine computation. O

For later reference, we note that the intersection Sp(2n) N O(2n) consists of

the matrices
u -v
<V U ) € GL(2n; R),

with
UV =VU and U'U + VIV =1d.

This is exactly the condition for U 4 ¢V to be a unitary matrix.
Proposition 3.5. For all A € Sp(2n), we have det A = 1.

Proof. The relation At.JyA = Jy immediately implies det A = 41 holds. The
fact that det A = 1 will follow e.g. from the fact that the symplectic group is
path-connected, which we will show later, as det(/d) = 1.



From a higher-level point of view, det(A) > 0 just means that A is orientation
preserving, which follows since the standard symplectic form is compatible
with the almost complex structure Jy. O

3.2 Eigenspaces of symplectic matrices

In the next subsection, we will also need some results about eigenspaces of
symplectic matrices. In order to work over an algebraically closed field, so
that every characteristic polynomial splits into linear factors, we complexify:
we consider symplectic matrices as elements of GL(n,C) and extend the
symplectic form w to a bilinear map w: C?" x C?* — C using Jo.
Proposition 3.6. If \, i are distinct eigenvalues of A € Sp(2n) with A # 1
and r,s > 1, the spaces ker(A — A\1d)" and ker(A — p1d)® are orthogonal
w.r.t. w.

We skip the proof, since nothing interesting happens there: it just goes by
induction over r and s, using that A is symplectic and the definition of
eigenvalues. O

We define generalised eigenspaces E for eigenvalues A by

Ex = | ker(A — Xid)™ c C*".
meN

Recall from linear algebra that each generalised eigenspace F) is a vector
space whose dimension equals the algebraic multiplicity of the eigenvalue A,
and that C?” is the direct sum of these eigenspaces.

Corollary 3.7. If A\ # 1, we have w(Ey, E,) = 0.

The restrictions of w to E1 and E_1 are non-degenerate. For every eigenvalue
A # +1, the restriction of w to E\x@ Ey-1 is non-degenerate.

Proof. The first phrase is a clear corollary. The second is clear by definition,
since A is symplectic; the third is analogous. O

3.3 Eigenvalues of symplectic matrices

In a precise sense, eigenvalues of symplectic matrices come in pairs.
Proposition 3.8. If A € Sp(2n), a complex number X\ € C is an eigenvalue
of A iff \71 is.

Proof. We have A'JgA = Jy & Al = JyA~'Jy, hence A’ and A~! are
conjugate and in particular have the same eigenvalues. O

In fact, also the algebraic multiplicities of the eigenvalues coincide.



Proposition 3.9. For A € Sp(2n), we have det(A — A1d) = A\?" det(A —
A7h).

Proof. Just a slightly clever computation, using det A = 1: we have

det(A — \id) = det(—Jo(A™ 1) Jp — Nid)
= det(Jo(—(A™HY)Jp + AJ3)
= det(—(A™1)" + \id)
= det((A™1)") det(id —AA")
= det(A\A" — Id) = A" det(A — A71id).

O]

Corollary 3.10. For all A € Sp(2n) and X € C, the algebraic multiplies of
X and \~1 coincide, and equal the algebraic multiplicity of X and A~1.

3.4 Topology of the symplectic group

The purpose of this subsection is to sketch the proof of the following result.
Proposition 3.11. The group Sp(2n) is path-connected and 7 (Sp(2n)) = Z.

Our strategy is to show that Sp(2n) deformation retracts to the unitary group
U(n): it is a standard fact that U(n) is path-connected and has fundamental
group Z, and a deformation retract is in particular a homotopy equivalence.

To put this into context: the unitary group U(n), seen as a submanifold
of GL(2n,R), has dimension n?, whereas the symplectic group Sp(2n) is a
submanifold of dimension n(2n + 1) = 2n? + n.

The first ingredient is the so-called polar decomposition. Recall that any
complex square matrix A has a polar decomposition, i.e. can be written
as a product A = UP of a unitary matrix U and a positive semi-definite
Hermitian matrix P. Further recall that if A is invertible, U and P are
uniquely determined: P = v/ A*A is the principal square root of the positive
semi-definite matrix A*A, and U is accordingly given as U = AP~!.

Note that this is just for analogy: we will use a slightly different form!

Sketch of proof. The polar decomposition in GL(2n,R), in a different version
than above, yields a homeomorphism

Sp(2n) — U(n) - C,
A—U-S with § = VAA, U = AS™!,



where C), = {positive definite symmetric symplectic matrices} C Sp(2n) is
an open subset of the symmetric symplectic matrices. The idea is to show
that C, is contractible, yield will yield a deformation retract.

Any matrix A € C, has positive real eigenvalues. In particular, it has
a unique real logarithm log A and the mapping A +— log A is continuous.
This logarithm can e.g. be constructed by diagonalising A and taking the
logarithm of entries component-wise. This construction shows that log A is
also symmetric and positive definite.

Now, the map ¢: C,, x [0,1] > (A,t) — exp(tlog A) — Sp(2n) yields a
contraction of C),: it only remains to show that im¢ C Sp(2n). Using
Corollary 3.7, one can show that A has a symplectic basis in which it is
diagonal. This implies that exp(tlog A) is also symplectic. O

References

[AD14] Michele Audin and Mihai Damian. Morse theory and Floer homology.
Universitext. Translated from the 2010 French original by Reinie
Erné. Springer, London; EDP Sciences, Les Ulis, 2014, pp. xiv+596.
ISBN: 978-1-4471-5495-2; 978-1-4471-5496-9; 978-2-7598-0704-8. DOT:
10.1007/978-1-4471-5496-9. URL: https://doi.org/10.1007/
978-1-4471-5496-9.

[MS17] Dusa McDuff and Dietmar Salamon. Introduction to symplectic
topology. Third. Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, 2017, pp. xi+623. 1ISBN: 978-0-19-879490-5;
978-0-19-879489-9. DOI: 10.1093/0s0/9780198794899.001.0001.
URL: https://doi.org/10.1093/0s0/9780198794899.001.0001.

[Sal99] Dietmar Salamon. “Lectures on Floer homology”. In: Symplectic
geometry and topology (Park City, UT, 1997). Vol. 7. IAS /Park City
Math. Ser. Amer. Math. Soc., Providence, RI, 1999, pp. 143-229.
DOI: 10.1016/S0165-2427(99)00127-0. URL: https://doi.org/
10.1016/50165-2427(99)00127-0.


https://doi.org/10.1007/978-1-4471-5496-9
https://doi.org/10.1007/978-1-4471-5496-9
https://doi.org/10.1007/978-1-4471-5496-9
https://doi.org/10.1093/oso/9780198794899.001.0001
https://doi.org/10.1093/oso/9780198794899.001.0001
https://doi.org/10.1016/S0165-2427(99)00127-0
https://doi.org/10.1016/S0165-2427(99)00127-0
https://doi.org/10.1016/S0165-2427(99)00127-0

	1 Context and motivation
	2 Outline
	3 Symplectic matrices and their properties
	3.1 Basic definitions and subgroups
	3.2 Eigenspaces of symplectic matrices
	3.3 Eigenvalues of symplectic matrices
	3.4 Topology of the symplectic group


