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1. Pathwise Itô Calculus

Definition 1.1. A partition (of time) of [0,+∞) is a set Π = {t0, t1, . . .} with 0 = t0 < t1 < · · · and
lim

n→+∞
tn = +∞. The mesh-size of Π is

|Π| = sup
i
|ti+1 − ti| .

Definition 1.3. Let X ∈ C
(
[0,+∞),Rd

)
, with X =

(
Xj

)
j=1,...,d

. X is said to be of continuous
quadratic variation if

⟨Xj , Xk⟩t := lim
n→∞

∑
ti∈Πn
ti≤t

(
Xj
ti+1∧t −Xj

ti

)(
Xk
ti+1∧t −Xk

ti

)
(1.1)

exists for all j, k ∈ {1, . . . , d}, ∀t ≥ 0, is continuous in t, and is of finite variation.
In that case, ⟨Xj , Xk⟩t is called the (quadratic) covariation of Xj and Xk until t.

Lemma 1.9. For g ∈ C ([0,+∞),R), we have

lim
n→∞

∑
ti∈Πn
ti≤t

g(ti)∆iX
j∆iX

k =

∫ t

0
g(s)d⟨Xj , Xk⟩s

Lemma 1.10. If Xj is continuous and of finite variation ∀j, then

⟨Xj⟩t = ⟨Xj , Xj⟩t = 0 ∀t,

in particular X = (Xj) is then of continuous quadratic variation.

Theorem 1.11 (d-dimensional Itô Formula). Let X =
(
Xi

)
i=1,...,d

be continuous, of continuous

quadratic variation, and f ∈ C2
(
Rd,R

)
, then

f(Xt) = f(X0) +

d∑
j=1

∫ t

0

∂f

∂xj
(Xs)dX

j
s +

1

2

d∑
j,k=1

∫ t

0

∂2f

∂xjxk
(Xs)d⟨Xj , Xk⟩s, (1.2)

with ∫ t

0
▽f(Xs)dXs :=

d∑
j=1

∫ t

0

∂f

∂xj
(Xs)dX

j
s := lim

n→∞

d∑
j=1

∑
ti∈Πn
ti≤t

∂f

∂xj
(Xti)∆iX

j

defining the Itô integral as limit of “non-anticipating Riemann sums”.

For convenience, (1.2) is often written in differential notation as

df(Xt) =

d∑
j=1

∂f

∂xj
(Xt)dX

j
t +

1

2

d∑
j,k=1

∂2f

∂xjxk
(Xt)d⟨Xj , Xk⟩t. (1.3)

Corollary 1.13 (Product rule). For

(
X
Y

)
continuous, of continuous quadratic variation (in R2), we

have

XtYt −X0Y0 =

(∫ t

0
XsdYs +

∫ t

0
YsdXs

)
+ ⟨X,Y ⟩t (1.4)
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Lemma 1.14. GivenX and Y two processes which are continuous and of continuous quadratic variation,

with ⟨X,Y ⟩t = lim
n→∞

∑
ti∈Πn
ti≤t

∆iX∆iY , then

a) The quadratic covariation ⟨X,Y ⟩ exists and is continuous if and only if the quadratic variation
⟨X + Y ⟩ of X + Y exists and is continuous.

b) (Bilinearity)

• ⟨X,Y ⟩ = ⟨Y,X⟩,
• ⟨aX, Y ⟩ = a⟨X,Y ⟩ for a ∈ R,
• ⟨X1+X2, Y ⟩ = ⟨X1, Y ⟩+ ⟨X2, Y ⟩ for X1, X2, X1+X2 of continuous quadratic variation.

Note that the bilinear form ⟨, ⟩ is not a scalar product. In fact, a non-zero finite variation continuous
function has zero quadratic variation, and so ⟨, ⟩ is not positive-definite.

c) (Polarization)

⟨X,Y ⟩ = 1

2
(⟨X + Y ⟩ − ⟨X⟩ − ⟨Y ⟩) (1.5)

d) (Cauchy-Schwartz)

|⟨X,Y ⟩| ≤
√

⟨X⟩⟨Y ⟩ (1.6)

Corollary 1.15. If ⟨X,Y ⟩ is continuous, then it is of finite variation

Lemma 1.17. Let X be R-valued, continuous and of continuous quadratic variation.
Let g ∈ C1(R,R), then the map t 7→ g(Xt) is of continuous quadratic variation and

⟨g(Xt)⟩t =
∫ t

0

(
g′(Xs)

)2
d⟨X⟩s (1.7)

In particular, the class of real valued continuous X of continuous quadratic variation is stable under
continuously differentiable functions.

Lemma 1.18. If A is continuous and of finite variation, then ⟨X +A⟩ = ⟨X⟩

Theorem 1.19 (Properties of the Itô integral). Let X be real valued, continuous and of continuous
quadratic variation, then

a) For g ∈ C1, the Itô integral Yt =

∫ t

0
g(Xs)dXs is well-defined.

b) The map t 7→ Yt is continuous.

c) the map g 7→
∫ .
0 g(Xs)dXs is linear

d) Y has quadratic variation ⟨Y ⟩t = ⟨
∫ .
0 g(Xs)dXs⟩t =

∫ t
0 g

2(Xs)d⟨X⟩s
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Theorem 1.20 (Quadratic covariation of 2 Itô integrals). Let g1, g2 ∈ C1 and define

Y j
t :=

∫ t

0
gj(Xs)dXs,

for j = 1, 2, then ⟨
Y 1, Y 2

⟩
t
=

∫ t

0
g1(Xs)g2(Xs)d⟨X⟩s.

Theorem 1.21. Let X be as in Theorem 1.11, X =
(
Xj

)d
j=1

=
(
A1, . . . , An,Ψ1, . . . ,Ψm

)
, with

n+m = d and where A =
(
A1, . . . , An

)
is of finite variation and Ψ =

(
Ψ1, . . . ,Ψm

)
is of continuous

quadratic variation. Then for f ∈ C1,2(Rn,R1), we have

f(At,Ψt) =f(A0,Ψ0) +

∫ t

0
∇af(As,Ψs)dAs +

∫ t

0
∇ψf(As,Ψs)dΨs

+
1

2

m∑
j,k=1

∫ t

0

∂f

∂ψj∂ψk
(As,Ψs)d⟨Ψj ,Ψk⟩s, (1.8)

where ∇af and ∇ψf denote the gradients of f with respect to the A and Ψ coordinates respectively.

Corollary 1.22. For f ∈ C1,2(R,Rd), and X continuous and of continuous quadratic variation, we have

f(t,Xt) =f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0
∇xf(s,Xs)dXs +

1

2

d∑
j,k=1

∫ t

0

∂f

∂xj∂xk
(s,Xs)d⟨Xj , Xk⟩s,

(1.9)

Theorem 1.23 (Associativity of the Itô integral). Let X, f be as in Theorem 1.11, and Ψ an R1-valued

continuous function such that

∫ t

0
Ψs∇f(Xs)dXs exists. Then, the Itô integral

∫ t

0
ΨsdX̃s exists for

X̃t =

∫ t

0
∇f(Xs)dXs, and∫ t

0
ΨsdX̃s ≡

∫ t

0
Ψsd

(∫ .

0
∇f(Xu)dXu

)
s

=

∫ t

0
Ψs∇f(Xs)dXs

As an application of the Itô formula, we solve the “stochastic differential equation” (SDE){
S0 = 1
dSt = rStdt+ σStdWt,

(1.10)

where r ∈ R, σ > 0, and W is a typical path of the Brownian motion (t 7→ Wt is continuous and
⟨W ⟩t = t, ∀t ≥ 0). In fact, (1.10) is an integral equation that reads

St = S0 +

∫ t

0
Ssrds+

∫ t

0
SsσdWs, ∀t ≥ 0.

And the process

St := f(t,Wt) = e(r−
1
2
σ2)t+σWt . (1.11)

is straightforward to verify using the Itô formula to be a solution to (1.10).



2. The Idea of Perfect Dynamic Hedging and
Valuation by No-Arbitrage

2.1 Motivating Example

Consider Xt the price of risky asset (“stock”) at time t ≥ 0. Assume that assets pay no dividends, and
there is no storage cost. Consider a forward contract on the underlying, with maturity T (delivery date
of the forward). Then, how should a short party (say a “bank”) determine F (forward price), and hedge
her risk after entering the contract? Classical valuation approach would be that the price of the forward
is

π(H) = E
[
e−rT (XT − F )

]
. (2.1)

Hence, 0 = π(H) yields F = E [XT ]. But this is wrong i.g., the only no-arbitrage price being F −
X0e

rT . This can be shown by a replication of cashflows argument The references for this chapter are
[Bjö98], [LL00] and [Shr04].

2.2 The Idea of Perfect Dynamic Hedging

2.2.1 Assumption

We assume that the interest rate is r = 0 ( all prices are in discounted units). We denote by Xt(ω)
the price at time t of the risky asset for a scenario ω ∈ Ω. We assume structurally that t 7→ Xt(ω) is
continuous and is of continuous quadratic variation ⟨X(ω)⟩t =

∫ t
0 (σ(s,Xs(ω)))

2 ds, where σ(t, x) is
the “volatility profile”. Moreover, we assume that the price evolution is unknown at time t = 0, and
denote X0 = X0(ω).

Two examples of models satisfying these assumptions are given in the next section.

2.2.2 Model Examples

1. Bachelier Model (see [Bac00]).
The stock price process is given via the SDE

Xt = X0 +mt+ σWt, (2.2)

where m is the drift parameter, σ > 0 is the volatility parameter, W is a Brownian motion. From
(2.2), we have

⟨X⟩t = ⟨σW ⟩t = σ2t, t ≥ 0, for a.a ω,

that is σ(t, x) = σ and is constant.

2. Black-Scholes Model.
The stock price process is given via the SDE

Xt = X0 exp

((
m− 1

2
σ2

)
t+ σWt

)
, (2.3)

4



Section 2.3. Case Study: Bachelier Model Page 5

which is a geometric Brownian motion (suggested by P. Samuelson as model for asset prices).
The process X in (2.3) is the solution to the SDE

dXt = Xt (mdt+ σdWt) , X0 > 0,

from which we obtain

⟨X⟩t =
∫ t

0
σ2X2

t dt,

that is σ(t, x) = σx.

Next, we discuss the no-arbitrage valuation of a derivative with payoff profile H(ω) = f(XT (ω)), and
also the possibility of perfect hedging. The approach on no-arbitrage valuation is to determine the
fair price as the cost of the (dynamic) replication.

To this end, the ansatz is to solve the partial differential equation (PDE) for F (t, x) (fair price){
1
2σ

2Fxx + Ft = 0 (t, x) ∈ (0, T )× R
F (T, x) = f(x)

(2.4)

Let F ∈ C ([0, T ]× R) ∩ C2 ((0, T )× R) be solution1 to (2.4).

Lemma 2.1. Let F be as above, then it holds for all ω ∈ Ω, t ∈ [0, T ]

H(ω) := f(XT (ω)) = F (0, X0) +

∫ T

0
Fx(s,Xs(ω))dXs(ω). (2.5)

We observe:

• The fair price (at time t = 0) must be F (0, X0) to exclude arbitrage.
Otherwise, the strategy

a) Sell the contract at t = 0 for π(H),

b) trade according to ϑs(ω) = Fx(s,Xs(ω))

yields at time T : −H(ω) +

∫ T

0
ϑs(ω)dXs(ω) + π(H) = π(H)− F (0, X0). This gives arbitrage

profit if π(H) − F (0, X0) > 0. In case π(H) − F (0, X0) < 0, short the above strategy. So the
only no-arbitrage price (NA-price) is π(H) = F (0, X0).

• Analogously, at any time t ∈ [0, T ] the replication cost for payoff H at T is F (t,Xt(ω)).

2.3 Case Study: Bachelier Model

Our aim is to derive the solution to the PDE{
LF := 1

2σ
2Fxx + Ft = 0 (t, x) ∈ [0, T )× R “dual heat equation”
F (T, x) = f(x).

(2.6)

1Note:C1,2 would also suffice. Differentiability later actually shown on [0, T )× R.
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The heat equation PDE
1

2
Fxx − Ft = 0 (t, x) ∈ (0,∞)× R (2.7)

has fundamental solutions, for any y ∈ R,

P (t, x, y) := Pt(x, y) :=
1√
2πt

exp

(
−(x− y)2

2t

)
, x ∈ R, t > 0. (2.8)

For the boundary condition F (T, x) = f(x), where we assume that f is continuous and satisfies the
growth condition

|f(y)| ≤ C exp(C|x|α) (2.9)

with C ∈ [1,∞) and α ∈ (0, 2), we then let

F (t, x) :=

∫
R
f(y)Pσ2(T−t)(x, y)dy, (t, x) ∈ [0, T )× R, (2.10)

and have
f(x) = F (T, x) = lim

t↑T
F (t, x).

One can check that F defined in (2.10) solves the PDE (2.6) since the integrand function does so.
To justify that rigorously, one has to justify to differentiate under the integral, arguing with limits of
difference quotients and dominated converge, in order to justify the interchange of the limit operations
of partial derivation ∂ and integration

∫
in (2.10).

The expression of F in (2.10) can be written as

F (t, x) =

∫
R
f(y)

1

σ
√

2π(T − t)
exp

(
− (x− y)2

2σ2(T − t)

)
dy

=
1√
2π

∫
R
f(x+ σz

√
T − t) exp

(
−z

2

2

)
dz

= Ẽ
[
f(x+ σ

√
T − tZ)

]
, (2.11)

for Z ∼ N (0, 1) under P̃ (on some other probability space).

Stochastic Interpretation

Recall that one writes dP̃ = ZdP if Ẽ[H] = E[ZH] for all H = 1A, A ∈ F (or, equivalently, for all
F-measurable H ≥ 0, or all H ∈ L(F); cf. the notion of Radon Nikodym derivative.

Lemma 2.4 (Bayes’ Formula). For P̃ ∼ P on (Ω,F), Ft ⊆ F , and Z := dP̃
dP

∣∣∣
F
> 0 a.s. then,

Ht := Ẽt[H] =
Et[HZ]

Et[Z]
, for H ≥ 0 or HZ ∈ L1(P ), (2.12)

where Et[.] = E[.|Ft] = EP [.|Ft] denotes the conditional P -expectation given Ft.
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Theorem 2.5 (Change of measure on Wiener space, special case of the Cameron-Martin-Girsanov
theorem). Let W = (Wt), t ∈ [0, T ], be an (Ft)-Brownian motion on a filtered probability space
(Ω,F , (Ft)t≤T , P ). Let2 F = FT . Then the following statements hold:

i) There is an equivalent probability measure P ∗ ∼ P such that W ∗
t = Wt +

m
σ t, t ∈ [0, T ], is a

P ∗-Brownian motion,

ii) P ∗ ∼ P has the density Z := dP ∗

dP

∣∣
FT

= exp
(
αWT − 1

2α
2T

)
for α = −m

σ .

Hence, we can write the NA-price in (2.11) in the Bachelier model as

F (t,Xt(ω)) = E∗ [f (x+ σ(W ∗
T −W ∗

t ))]|x=Xt(ω)

= E∗
t [f (Xt + σ(W ∗

T −W ∗
t ))]

= E∗
t [f (Xt + (XT −Xt))]

= E∗
t [f (XT )] , (2.13)

Theorem 2.7 (Risk neutral valuation in the Bachelier model).

a) Under P ∗, Xt and πt := F (t,Xt) are martingales,

b) The NA-price process πt of the derivative satisfies

πt(f(XT )) = E∗
t [f (XT )] , ∀t ≤ T. (2.14)

Corollary 2.8 (Put-Call parity). The prices (at time t) of (European) call and put options on the same
underlying, same maturity T and same strike K must satisfy

πt(Call) = πt(Put) +Xt −K ∀t ∈ [0, T ]. (2.15)

Exercise: By 1-period arbitrage arguments one can show more generally that a similar Put-Call parity
like (2.15) holds true even model independently, if Xt is replaced by the forward price of the underlying
and K by the zero coupon bond price at t (for maturity T ).

2.4 Case Study: Black-Scholes Model

Similar to what we have done in Section 2.3, we look for the solution F ∈ C ([0, T ]× R+)∩C2 ((0, T )× R+)
to the PDE {

1
2σ

2x2Fxx + Ft = 0 (t, x) ∈ [0, T )× R+

F (T, x) = f(x).
(2.16)

The solution to the PDE (2.16) is obtained from that of the PDE (2.6) as

F (t, x) = G

(
t, log x− 1

2
σ2(T − t)

)
=

∫
R
f

(
x exp

(
y − 1

2
σ2(T − t)

))
1

σ
√

2π(T − t)
exp

(
− y2

2σ2(T − t)

)
dy

2w.l.o.g.



Section 2.5. The Idea of Perfect Hedging with Non-Zero Interest Rates Page 8

where G is the solution to the PDE (2.6) with boundary condition g(x) = f(ex). In this case, a sufficient
growth condition for f is |f(x)| ≤ C (x−n + xn) with C ∈ R and n ∈ N; F can be rewritten as

F (t, x) =

∫
R
f

(
x exp

(
zσ

√
T − t− 1

2
σ2(T − t)

))
1√
2π

exp

(
−z

2

2

)
dz. (2.17)

Theorem 2.10. The function F defined as in (2.17) solves the PDE (2.16).

Theorem 2.11 (Stochastic interpretation, risk neutral valuation). Under the “risk neutral” measure P ∗

defined via
dP ∗

dP
= exp

(
−m
σ
WT − 1

2

m2

σ2
T

)
,

it holds that

i) the process W ∗
t (t ∈ [0, T ]) is a P ∗-Brownian motion, and

ii) the price process (Xt)t≤T of the underlying and the no-arbitrage price process (πt)t≤T = (F (t,Xt))t≤T
of the derivative are martingales under P ∗, satisfying

Xt = E∗
t [XT ] and F (t,Xt) = E∗

t [f (XT )] ∀t ≤ T.

2.5 The Idea of Perfect Hedging with Non-Zero Interest Rates

2.5.1 Model

Our model in this section comprises two traded assets. Unlike in the previous section, when r ̸= 0 the
price of the riskless asset, the savings account, however is not constant with value 1 but varies over
time, albeit in a deterministic exponential fashion.

1) The “risky asset” (e.g. stock) with price process (St(ω))t≤T , such that t 7→ St(ω) is continuous,

of continuous quadratic variation with ⟨S(ω)⟩t =
∫ t
0 σ

2(u, Su(ω))du, t ≤ T , where σ(t, x) is the
volatility profile.

2) The savings account with some ( compound) interest rate r for borrowing and lending, with price
at time t, Bt = exp (rt).

Remark 2.12. • The value of 1 Euro at time T at some earlier time t ≤ T (maturity T zero coupon
bond price at t) is : exp (−r(T − t)) = Bt

BT
0 =: Bt,T .

The derivatives of European type payoff at time T are

H̃(ω) = f(ST (ω)) = H(ω)erT , (2.18)

where H̃ denote the discounted payoff, and H the non discounted payoff.

Definition 2.13 (Dynamic trading strategy). A dynamic trading strategy with respect to assets

(
B
S

)
is a couple

(
η
ϑ

)
=

((
ηt
ϑt

))
t≤T

with suitable conditions such that
∫ .
0 ηdB+

∫ .
0 ϑdS is well-defined.
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Definition 2.14. The trading strategy

(
η
ϑ

)
is called a self-financing (s.f.) strategy if the wealth

process defined by
Ṽt = ηtBt + ϑtSt

satisfies

Ṽt = Ṽ0 +

∫ t

0
ηsdBs +

∫ t

0
ϑsdSs, ∀t ≤ T.

Lemma 2.16. A strategy

(
η
ϑ

)
is self-financing with respect to

(
B
S

)
if and only if it is self-financing

with respect to

(
1
X

)
=

1

B

(
B
S

)
, with X =

S

B
.

2.5.2 Construction of Hedging Strategy

For H̃ = g(ST ), assume that {Su(ω) | u ≤ T} ⊂ R or R+, write R(+).

Theorem 2.17. Let G(t, x) ∈ C
(
[0, T ]× R(+)

)
∩ C2

(
(0, T )× R(+)

)
(or more generally with just

G(t, x) ∈ C1,2
(
(0, T )× R(+)

)
being such that t 7→ G(t, St(ω)) is

3 continuous on [0, T ] for a.a.ω) such
that it solves the Cauchy problem{

1
2σ

2(., .)Gxx +Gt + rxGx − rG = 0 ∀(t, x) ∈ (0, T )× R(+)

G(T, x) = g(x) ∀x ∈ R(+),
(2.19)

then

H̃(ω) = g(ST (ω)) = G(t, St(ω)) +

∫ T

t
ηu(ω)dBu(ω) +

∫ T

t
ϑu(ω)dSu(ω) (2.20)

for a self financing strategy

(
η
ϑ

)
given by

ϑt(ω) = ϑt(t, St(ω)) = Gx(t, St(ω)), (2.21)

ηt(ω) = ηt(t, St(ω)) =
G− xGx

Bt
(t, St(ω)). (2.22)

that satisfies dG(t, St(ω)) = ηu(ω)dBu(ω) + ϑu(ω)dSu(ω),

2.5.3 Case study: Black-Scholes Model with Non-Zero Interest Rate (r ∈ R)

The model is for St = BtXt with (Xt) from the (zero-interest) BS.model of section 2.4. The pricing
and hedging problem corresponds to solving the Cauchy problem{

1
2σ

2x2Gxx +Gt + rxGx − rG = 0 ∀(t, x) ∈ (0, T )× R+

G(T, x) = g(x) ∀x ∈ R+.
(2.23)

Theorem 2.18. The solution to the Cauchy Problem (PDE) (2.23) is given by

G(t, x) = F (t, xe−rt)ert, (2.24)

where F (t, x) is the solution to the PDE (2.16) with boundary condition g(x) = erT f(xe−rT ), respec-
tively f(y) = g(yerT )e−rT .

3instead of G(t, x) ∈ C
(
[0, T ]× R(+)

)



Section 2.5. The Idea of Perfect Hedging with Non-Zero Interest Rates Page 10

Stochastic Interpretation

Theorem 2.19.

a) Under P ∗, Xt :=
St
Bt

is a martingale.

b) For payoff function g(.) (at most of polynomial growth), the NA-price of the derivative is

G(t, St) = BtE
∗
t

[
1

BT
g(ST )

]
, ∀t ≤ T, (2.25)

and G(t,St)
Bt

is a P ∗-martingale in particular.

Corollary 2.21. For g(x) = (x−K)+ (call option) in the Black-Scholes model, the no arbitrage price
is given by the Black-Scholes formula

πt(Call) = StΦ(d+)−Ke−r(T−t)Φ(d−) (2.26)

= Bt,T (FtΦ(d+)−KΦ(d−)) , (2.27)

with d± :=
log

(
St
K

)
+

(
r ± 1

2σ
2
)
(T − t)

σ
√
T − t

=
log

(
Ft
K

)
± 1

2σ
2(T − t)

σ
√
T − t

. Variant (2.27) is the convenient

“Black’s formula”.

Discussion of the Black-Scholes Model assumptions

• Model assumes frictionsless market (no transaction costs, no taxes, no restrictions on short sales,
same interest rate for borrowning and lending, no (adverse) market impact of trades...) - ideal-
ization of reality.

• Black Scholes model is used as a standard reference model to quote option prices: A well known
saying is “The implied volatility is the wrong number to be put in the wrong model to give the
right price!”.

• In reality, hedging must be done in discrete time, e.g. discrete approximation by ∆tk risky assets
at time tk, hold over (tk, tk+1) and re-hedge at time tk+1. One could investigate the resulting
hedging-errors from discrete approximation by simulation, to actually see e.g. that

a) trading according to a time-discrete implementation of the (continuous) ∆-(”delta”)-hedging
strategy (i.e. with portfolio adjustments only being done at discrete time points) leads to a
diminishing hedging error for refining time grids; b) When implemented in discrete time, more
advanced strategies like ∆/Γ-hedging (see e.g. [Hul06]) can improve on the performance of plain
∆-hedging, i.e. obtain smaller hedging errors.

2.5.4 Black-Scholes Models With Dividends, and FX-options

Dividends Payed Continously

Here, we denote by At the nominal risky asset (“stock”) price at time t, such that

At = A0 exp

(
σWt +

(
µ− 1

2
σ2

)
t

)
, ∀t ≤ T. (2.28)
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The riskless asset price is, as in Section 2.5.1, Bt = ert. Assume dividends are payed continuously
according to some dividend rate δ ≥ 0 as fractions of the current risky asset value.

Then St = atAt = A0 exp
(
σWt +

(
µ+ δ − 1

2σ
2
)
t
)
is the value process of a self-financing strategy,

that re-invests all dividends into stock, with A0 = S0 = X0. Moreover,

Xt =
St
Bt

= e(δ−r)tAt = S0 exp

(
σW ∗

t − 1

2
σ2t

)
,

with W ∗ a P ∗-Brownian motion, where dP ∗

dP = exp
(
−m
σWT − 1

2

(
m
σ

)2
T
)
on FT for m = µ + δ − r.

Therefore, we can proceed as before, by considering St as the (non-discounted) value process of a
tradable risky asset. A few example of how we can proceed follow.

Examples

1. The forward price Ft at time t ≤ T , on AT at T is

Ft = e(r−δ)TXt = er̃(T−t)At, (2.29)

where r̃ = r − δ.

Exercise: One can also derive (2.29) by a direct static replication argument.

2. Consider the payoff H = (AT −K)+ = e−δT
(
ST − K̃

)+
, with K̃ = eδTK. Then the general

so-called “Black’s Version” of the Black-Scholes formula for pricing European call options in a
Black-Scholes model with or without dividends is

πt = Bt,T (FtΦ(d+)−KΦ(d−)) , (2.30)

with d± :=
log

(
Ft
K

)
± 1

2σ
2(T − t)

σ
√
T − t

.

Note that formulae (2.30) and (2.27) are identical.

Remark 2.25. For discretly payed dividends, see alternative models e.g. in [KR05].

Foreign Exchange Derivatives

Similar arguments as for dividends can be used for FX-options (Foreign eXchange options on exchange
rates of currencies). The model is the following

• Bd
t = er

dt (in Euro) is the domestic savings account,

• Bf
t = er

f t (in Dollar) is the foreign savings account,

• χt = χ0 exp
(
σWt +

(
µ− 1

2σ
2
)
t
)
; (σ > 0) is the FX rate quote of one Dollar in Euro (quoted as

“$/EUR”). It is not a tradable asset.
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Consider an option with payoff H = (χT −K)+. One can consider rf like a dividend rate δ of an

tradable but risky asset St = Bf
t χt. The NA-price of a derivative with payoff H = (χT −K)+ is then

obtained as (apply (2.30) by

πt = e−r
f (T−t)χtΦ(d+)−Ke−r

d(T−t)Φ(d−).
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