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SUMMARY 
Based on both moderate and finite rotation bending theories of thin elastic shells including shear deforma- 
tion, adaptive non-linear static finite element analysis is treated within a displacement approach and 
h-adaptivity. The a posteriori error indicator given by Rheinboldt, gained by linearization, is investigated in 
order to decide whether the deformations influence the indicator explicitely and how parameter dependent 
problems (like the Reissner-Mindlin model) behave in the process of adaptation. In order to achieve overall 
consistency, dimensional adaptivity (to 3-D elasticity) is implemented within disturbed subdomains, espe- 
cially at supports. 

Results are that Rheinboldt’s error indicator is valid under certain restrictions but not directly at 
bifurcation points and that robustness is not improved by adaptation. 

Nested quadrilateral finite elements are used for studying pre- and post-buckling states of plates and 
shells. 

INTRODUCTION 

Moderate and finite rotation theories’ -3 are available including the finite element analysis, 
especially the treatment of shear locking problems. The shell model used in this paper is based on 
geometrically non-linear Reissner-Mindlin kinematics where the finite element formulation may 
be derived from first Piola-Kirchhoff, Biot or second Piola-Kirchhoff stress resultants altern- 
atively. Inextensibility in the thickness direction is assumed as well as the restriction of small 
strains which results after elimination of drilling degrees of freedom in a five-parameter shell 
model. The description of finite rotations of the shell normal is expressed in terms of a scew- 
symmetric tensor. 

In the frame of h-adaptivity, a general error analysis for geometrically non-linear problems is 
not available up to now. Several papers from Rheinboldt4 and the recent work by Verfiihrt’ try to 
justify the use of the well known linear Babuska-Miller’ error-estimator even for geometrically 
non-linear problems. The presented arguments in Reference 4 are based on the linearized 
non-linear problem, but the accuracy of the underlying metric in the non-linear continuum- 
mechanical settings are not discussed. In this paper more general conditions of this proof are 
taken into account and robustness features depending of the chosen shell model are investigated. 
Furthermore, the validity of the results for two important situations, bifurcation problems and 
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locking phenomena, which are of great interest in finite-element applications, are discussed. 
A frame for efficient numerical implementation is given too. 

Following geometrical non-linear load displacement paths a suitable refinement strategy is 
presented including bifurcation problems. Such adaptive methods for detecting local and global 
buckling need consistent and stable modelling in conjunction with reliable numerical approxima- 
tions. Therefore, dimensional adaptivity is taken into account to solve these shortcomings, mainly 
at supports. 

Three numerical examples are presented in order to show the effectivity of the error indicators, 
to give a deeper insight into the investigated shell problems and illustrate the proposed solutions 
strategies. 

A THIN SHELL ELEMENT FOR SMALL ELASTIC STRAINS 
AND FINITE ROTATIONS 

In this section we discuss a five-parameter finite element formulation applicable to structural 
problems with finite rotations and small strains. A displacement approach is used which includes 
shear deformation and therefore belongs to non-linear Reissner-Mindlin type theories.21 The 
kinematics for the finite element formulation are derived from the description of the movement of 
an orthonormal Cartesian frame during deformation, identical with the initial normal vector and 
the tangents in the undeformed state. Since shear deformation is included, the rotated director is 
not normal to the deformed middle surface, and therefore the rotated base vectors do not remain 
tangents to the deformed surface. Modern approaches to this treatment of shells not using the 
traditional strain measures in convected co-ordinate systems were given by Gruttmann et al.' and 
Simo3 amongst others. Only two independent rotational degrees of freedom are used to describe 
the rotations of the Cartesian frame, and therefore arbitrary but smooth surfaces can be modelled 
with Co continuous shape functions. The use of drilling degrees of freedom affects zero energy 
modes, especially within the treatment of stability problems, see also Reference 3. In order to 
overcome the problems associated with shear locking we choose the assumed strain element 
suggested by Bathe and Dvorkh6 For the sake of convenience we restrict ourselves in this paper 
to the St. Venant-Kirchhoff hyperelastic material law for small strains. 

Kinematics of the shell 

where x denotes its position vector in the current configuration, see Figure 1. 
The usual kinematical setting describes the position of an arbitrary point in the shell space 

(1) 
h h 

x =  xo +s3a3,  --<s < -  
2 j . 2  

Here 

xo = Xo + u = (Xoi + ui)ei (2) 

describes the translation of the shell middle surface from its initial into the current configuration 
whereas s3 is the co-ordinate in the thickness direction and a3 the shell director in the current 
configuration. 

Furthermore, we introduce an orthonormal co-ordinate system ti in the reference configuration 
where the vectors tl  and t2 are tangents to the shell middle surface, and s1 and s2 are the 
associated co-ordinates. An additional orthonormal basis is constructed in the current configura- 
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Figure 1. (a) Reference and current configuration of a shell, (b) finite rotations 

tion of the shell, and the following relations between the two different bases hold. 

ti(s,) = Ro(s,)ei, ai(s,) = R(s,)ti, a = 1 ,  2 (3) 

Since the two matrices Ro and R describe an orthogonal transformation, the Euclidean norm of 
the director vector a3 remains unchanged during deformation, and extensibility in thickness 
direction is therefore excluded. The following expressions for the derivatives of the base vectors 
are necessary for subsequent development: 

The scew-symmetric tensors Ron and R, 

are related to associated axial vectors oOa and o, which allow to reformulate the above equations 

Variational formulation 

over the shell thickness 
We define stress resultants and stress couple resultants by integration of the stress vectors t, 
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The stress vectors t, of the current configuration are measured with respect to the undeformed 
cross-section, i.e. they are derived from P = ti 0 ei .  No drilling moments occur within the chosen 
settings, Mu3 = (mu x a3)- a3 = 0. The derivation of the variational form starts from static field 
equations for the 3-D theory expressed in terms of the first Piola-Kirchhoff stress tensor in the 
reference configuration 

div P + pb, = 0, F x P  = 0, F = Grad x(X) (8) 
These equations are integrated and yield the equilibrium conditions for the stress- and 

stress-couple resultants as well as the associated boundary conditions 

anl an, 
- + - + q = o  
as, as, 

am, am, axo 8x0 -+-+ - x n l  +-xn,  + m =  0 as, as, as, as2 

(9) 

Following Gruttmann et al.' we proceed with standard variational calculus and multiply the 
above Euler-Lagrange equations with statically admissible variations. After application of the 
divergence theorem the final result for the static weak formulation with first Piola-Kirchhoff 
stress resultants is 

6 W = (n,6t, + m262,)dQ I* 
where the associated virtual strain measures are 

at, = 6xo,, - 6w x xo,,, 62, = 6xo,, - 6w x (0, + Roo,), 6ai:= 6w x ai (12) 

An equivalent expression for the internal virtual work is given in terms of Biot stress resultants 
N, = RZR'm,, Mu = R:R'n, and work conjugated strain measures connected with the right 
stretch tensor U. We derive 

6 W =  (N,~E, + M,6K,)dR J* (13) 

and get the variational strain measures 

6 ~ ,  = RiRT6$ = G(RiRTxo,,), BK, = RiRT82, = 6(RiRTa,) (14) 
where initial curvatures oOa are neglected. Membrane strain measures and related work con- 
jugated membrane stress resultants connected with the first Piola-Kirchhoff tensor are not 
a priori symmetric. The same feature is shown by strain measures and stress resultants connected 
with the right stretch tensor U and the Biot stress tensor. Following Wriggers and Gruttmann' 
and making use of a polar decomposition, 

aUi = (RiRTxo,,).ei = x0,:ai a,, = Auyiiy,, Liz,  = ii,, (15) 

(16) 
Using the Green Lagrangian strain measure of the 3-D problem (E = (1/2)(FTF - l)), we get the 
membrane strains 

symmetric membrane strains are obtained as 

E,p = d,, - a,, 
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the shear strains 

7% = X O . a . 8 3  - XO.i.f3 
and the elastic curvatures 

The related stress resultants and stress couple resultants RUB, A?uD and om are based on the second 
Piola-Kirchhoff stress tensor. The virtual work of the internal forces then reads 

K U D  = xO,.'a3,8 - Xo.u-t3,D 

The straightforward derivation of second Piola-Kirchhoff stress resultants from Biot stress 
resultants is shown in Reference 8. 

Geometry interpolation and finite element discretization 

In this section the finite element formulation for the theory described above is summarized. 
Since the formulation in the previous section involves only axial vectors and the rotation tensor, 
a specified representation of the rotations does not influence the general equations. For instance, 
quaternions or angles with a certain combination of rotations about follower axes (e.g. Eulerian 
angles) can be useful. The finite element formulation has to be done carefully because singularities 
may occur in the solutions. 

The chosen unknowns for the rotations are the components of the incremental axial pseudo- 
vector Aw'. The associated skew-symmetric matrix AQ' results from a linearization of the 
incremental rotation tensor, i.e. a Taylor expansion of the tensor AR'. This parametrization is 
supposed to be singularity free. The update of the whole rotation tensor R' within each step of the 
Newton iteration is computed exactly with the incremental tensor ARi.3*9 

An isoparametric Co continuous approach is used, and five nodal values (subscript k) are 
interpolated with bilinear interpolation functions (Nk). A superscript i denotes a single step of the 
Newton iteration. The incremental nodal displacement vector is defined as 

AvLT = [AVik, A&, A&, APlk, A&] = CAUL', Ap:'] 

with 

AX' = c N k A X i ,  Au' = CNkAUi, AW' = CNkAW: (19) 
k k k 

Two independent local rotation angles ABi are transformed into the three global rotation angles 
Aw' with the matrix A, 

Aw' = AAP', A = Calla2] (20) 

(21) ,,i+ 1 = A,,' + ,,i 

whereas the rotation field needs a multiplicative update starting from the initial position of the 
Cartesian frame 

At nodal points the update of the displacement field is obtained additively, 

I 

R0 = CtlItZlt31 (22) 

R'' = ARi R', R' = [a I a2 1 a3]' (23) 
which leads to 
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From equations (20) and (23) the following expression for the Taylor expansion of AR' (Rodriguez 
formula) can be found in References 3 and 9, e.g. 

The construction of the discrete weak form is performed with the expressions given for Aw', Ani 
and R'. The following standard linearization process3 of the discrete static weak form yields the 
tangent operator K' and the residuum G'. 

A POSTERIORI ERROR ESTIMATORS 

It is the aim of this subject to discuss the validity of the linear 'error estimator' which is derived 
following Rheinboldt4 and elaborated in detail by Verfuhrt.' We mainly treat the following 
questions: 'Is it allowed only to consider the equilibrium and to take the residual forces into 
account but ignore the accuracy of the underlying metric in the non-linear continuum-mechanical 
stetting?' In order to clarify our answer 'yes and no', this section starts with reviewing 
Rheinboldt's justification of the use of an error estimator concerning the linearized problem. Then 
we discuss the conditions of this proof and treat two crucial situations namely bifurcation and 
locking phenomena which are of high importance in this paper. This section is concluded with 
some summarizing remarks and consequences from an engineering point of view. 

Rheinboldt 's derivation 

generality) with a norm II.II (e.g. energy norm) and a non-linear smooth mapping 
We consider a real vector space X of displacement fields (a Banach space without loss of 

G : X H X *  

where the dual X* represents the space of forces. For some load p EX* and a scalar I E R, the load 
factor, let A * p, be the applied load which has to be in equilibrium with the reaction G(u) of the 
considered mechanical structure under the displacement field u E X (including boundary condi- 
tions), 

C(U) = A-p (25) 

Assume that (u,, I,) satisfies (25), and DG(uo):X + X* is bijective, i.e. DG-'(uo) =:K(uo)-': 
X* + X exists and is bounded. DG denotes (Frechet) derivative of G. Then, the theorem on 
implicit functions shows (if X is a Banach-space) that there is some dl, bZ > 0 such that, for any 
I with lIo - I (  < dl, there exists one and only one u E X  with (25) and 11u - uoII < dZr i.e. near 
(u,, A,) we have a unique solution branch for (25). According to the inverse function theorem 
DG(u)-' exists and is bounded near uo. Hence, without loss of'generality, we may assume that 

II DG(u)-' II G MI, II Dz G(4 II < M2 

for any u EX with 11 u - uo 11 G d2 where DZG is the second (Frechet ) derivative of G assumed to 
be continuous. Since, in general, we cannot expect to know the solution (u,, A,) exactly, we have 
to treat some approximation (ii,, x,) of it. In this approach the numerical treatment does not 
matter at this moment, it will be taken into account later in this section, but the approximation 
may be found computationally where ii, = u,, is the finite element solution. 
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The first assumption is that we have 

Due to the main theorem on calculus, 

G(y) = G(x) + ~:DG(x + t(y - x)Ny - XI dt 

= G(x) + D G ( x ) [ y  - X] 

f l  f f  
DZG(x + S(Y - x))[Y - X] [y - X] dt 

+ Jo Ju 
for any x, y EX so that, for y = uo and x = ii,, it holds that 

M2 2 II GWo) - G(uo) - DG(fio)[uo - Go1 II G 2 6 2  

Since DG(iio) is invertible with IIDG(iio)-' 11 d M 1 ,  we have 

IIUO - QO - DG(iio)-'CG(Qo) - G(uo)] 11 < fMlM26:  

Since C(uo) = lo. p ,  this yields 

IIUO - Q o  + DG(Go)-'[G(Io) - l o . p ] l l  < fMIM2b: (26) 
Following Rheinboldt we consider the linearized equation evaluated at the known point Go, i.e. 

consider the solution wo of the left-hand side of (26), namely 

WO = 60 - DG(iio)-l[G(Qo) - & . p ]  

Thus, wo E X  solves the linear problem 

DG(iio)[wo - G o ]  = G(ii0) - l o p  

Using the definition of wo, (26) gives 

II wo - uo I/  < tMlM26: 

II a0 - uo II '(1 + c) = It iio - wo II 
which, using the triangle inequality twice, leads to the final result 

where Ic (  < (1 /2 )M1M2d2 .  Using Landau's symbol, this reads 

iio - UO = (iio - wO) (1 + O(MiMZd2)) 

Conclusions 

Using (29), Rheinboldt's argument is as follows: if a2 is small, which means that the approxima- 
tion lo is good, then, as seen in (29), the error 11 Qo - uo 11 is nearly equal to the difference of the 
approximation and the solution of the linearized equation I( iio - wo (I. Thus, it suffices to estimate 
the latter 11 Go - wo 1) dealing with a linear problem. Thus, the error indicators of the linear theory 
may be applied to the linear problem (27). 

This conclusion is mathematically right and justifies the use of linear error indicators for an 
adaptive mesh refinement steering also in regular points of non-linear points. Hence, our answer 
about the justification of using linear error indicators is 'yes'. 
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This holds for an asymptotic behaviour when the constant c in (29) is small. For the above 
mentioned situation there exists some small number dz such that the above justification is valid 
for all approximations iio with 1) ii, - uo 1) < a2. In practical situations it is not a priori clear that 
this holds. Therefore this must also be controlled within the iterative mesh refinement feedback 
algorithm. 

Conversely, one main criticism is that the linear error indicator (i.e. the error indicator for the 
linearized problem (27)) deals with the residual, i.e. it treats only the forces but not the validity of 
the current configuration. In the mathematical analysis of the previous subsection, this is 
emphasized by the fact that d2 must be sufficiently small and hence that the (computed) 
approximation iio must be sufficiently near to the exact solution uo. Moreover, the analysis turns 
out that asymptotically the influence of the wrong initial configuration (i.e. the influence of 
I( uo - iio 11) on the error estimator is of 'one order lower' than the influence of the equilibrium 
(i.e. the influence of 11 G(iio) - Aop)I). But, again, this holds only in the sense of an asymptotic 
expansion, and may be false if 11 uo - iio 11 is not small enough. 

In the following subsection we consider two examples of practical interest in which the use of 
the linearized error estimator is, in principle, not possible. In both cases, the constant M1 is not 
bounded uniformly. 

Robustness 

As it is well-known, e.g. in the case of Reissner-Mindlin plates, the thickness t of the plate plays 
an essential role in the error analysis and leads to locking for t --t 0. The same phenomena can be 
observed in related shell models. Since the paper of Arnold (only 1-D), there are several 
mathematical contributions to the analysis of locking and which give several possibilities of 
stabilizing the numerical analysis. This gives robust methods leading to efficient approximations 
which overcome locking. 

Mathematically, the essential observation is that (using an appropriate scaling) the thickness 
t appears partly in the tangent stiffness matrix as a factor l/t2, i.e. the above constant M2 depends 
on t, i.e. 

(30) 
1 

M 2  = mzt' M I  = ml, 

and ml, m2 do not depend on t .  Note that, in this case, (28) gives 

such that we have to expect that the constant c in (29) is of order ( d 2 / t ) .  
In the next step we consider the finite element approximation. In the first example we assume 

that we have locking and are dealing with piecewise polynomials of degree p. Then, if h denotes 
the maximal element length in a quasi-uniform mesh (for simplicity), then the classical error 
estimate gives 

hP 
t 

I I U O  - fioII < c z  

i.e. linear convergence for piecewise linear elements and soforth, provided the thickness is 
constant. Assume that b2 may be equal to the left-hand side so that we may expect that 
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is the order of the constant c in (29). We remark that, in any shell or plate theory, usually, the 
thickness is not greater than the mesh size, even in adaptive methods. Therefore, hZp/t4 2 t4-Zp.  

For linear elements and thin shells, this shows that the constant c in (29) may depend like c/t2 
which is far from being bounded. Thus, the use of the linear error indicators is useless in this case, 
our answer for the introduction’s question is ‘no’. 

Note that the influence of locking is weakened if we use higher degrees of p .  
In the second example we assume that we have some special elements without locking such we 

have some error estimate like 
IIuo - i o I I  < C h P  

i.e. linear convergence for piecewise linear elements and soforth, but a robust convergence, i.e. 
independent of thickness. Note that this concerns only the quality of iio but not the fact that we 
have still (30). Hence, the above conclusions suggest that the constant c in (29) has the form 

h2P 
(82lt)’ %z 7 

such that p = 1 leads to a reasonable use of the linearized error indicator. 

Bifurcation 

This paper treats stability problems in shell theory such that the use of the error indicator is of 
crucial importance and will be discussed in this subsection. 

In the case of a stability point the tangent stiffness matrix becomes non-regular, hence the 
occurrence of the exceptional case can be observed numerically. Near the stability point the 
constant M1 is high, and the constants hl ,  d2 are not greater than the distance of the point (u,, A,) 
to the stability point (u*, A*). Hence, it is not clear a priori that (i) ) I  uo - ii, 11 c a2 since ii2 is small 
and (ii) c is small because MI may be very large. 

A more detailed analysis as in the first subsection shows that 

M2 2 IIG(fi0) - A0.P - DG(uo)Cuo - WOI II < - 7 5 2  

is still valid. A closer look at the eigenvectors related to the smaller eigenvalues of DG(uo) shows 
that we have to decompose uo,ii0, wo in the direction of the crucial eigenvectors and the 
remaining part. Then, the above estimates (applied to the non-crucial directions) show that the 
estimate (29) holds in this case as well for the remaining, non-crucial part. Thus, up to the crucial 
directions the error indicators work well. 

Summarizing, the linearized error indicators can be applied provided that the error of the 
approximation is good in comparison with the norm of the inverse of the tangential stiffness 
matrix and the second derivative of G. Otherwise, namely in case of locking or at bifurcation 
points, the linear error estimators may be useless for coarse finite element meshes. 

Also bordering algorithms, e.g. the deflated decomposition of the solution near singular 
solution points,” cannot overcome this problem. This is shown in the sequal by investigating the 
linearization of (25)  near singular equilibrium points u: with the condition 

G(u:) - G(u,*) - DG(u: - u:) = 0 + 9.t. (31) 
with u: - u: e e *  and G(u:) - G(u:) = R*. By an appropriate shifting, 

[: :] L* := DG(u,*) = 
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with IIL-' (1 < v l  and E 6 1, then multiplying (31) with the matrix [k- '  y ]  from the left-hand side 
and defining e* := [$I; R* := [",I, we get two equations, regarding the structure of L*, namely 

1 1 
R: = &e: + q.t. + e* - -R* + -.q.t. 

2 - &  2 & 
(34) 

such that the residuum cannot be reduced for growing dimension of u: if E is sufficiently small.' 
This is especially important for branch switching into post-critical loading paths. The constant 

MI in (26) becomes large in this case but M2 has still to be small. Outside of the E surrounding, 
post-critical equilibrium points can be adaptively computed with the Rheinboldt indicators like 
pre-critical paths. 

Implementation of Rheinboldts error indicator 

Following non-linear load deflection curves within an iterative process, the displacement 
controlled Newton-Raphson method is not able to bypass points with vanishing det KT = 0. But 
such extremals like limit points or bifurcation points are of great interest for structural engineers. 
The augmented system of non-linear equilibrium conditions for the arclength method overcomes 
the shortcomings by setting 

where the non-linear function f(v, A) describes the chosen arclength scheme. Linearization at an 
equilibrium point yields 

In order to obtain incremental stress states, the Frechet directional derivative yields 

where the different possible choices of v , , ~ ~ ~  are discussed in detail in the following chapter. Within 
a certain neighbourhood at bifurcation points measured with the norm IIu* - u"I(, the nor- 
malized eigenvector @ according to the lowest eigenvalue of KT is used for applying the error 
estimator. The first eigenvalue may be very small but not zero. In this case we obtain the 
incremental displacement 

AVtriai = @(KT (V(LiJ)) (38) 

where single valued bifurcations are assumed. Due to the results of this chapter, adaptivity is only 
possible before and after bifurcations. 

The BabuSka and Miller12 error indicator is adequate for the linearized elastic problem, i.e. 
checking Aa,,. For bilinear shape functions only the projected stress jumps at element boundaries 
are usually relevant. 
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For a shell element i we get the a posteriori indicator with respect to its neighbours 

?iMEM 2 = - ti I J(An)TJ(An)ds 

?iBEN 2 = - t' J(Am)TJ(Arn)ds 

KiLMEM an, 

G B E N  m. 

7iSHEAR 2 - - 7 t i  5 J(Aq)'J(Aq)ds 
KiSHEAR en, 

2 2 
V i B M  = ViMEM -k ??BEN + ?:SHEAR 

with 

Et? Eti Eti 
KMEM = - 1 - v2' &HEAR = K ~ 2(1 + v )  12(1 - v2)' 

KBEN = 

The heuristic Zienkiewicz and Zhu13 error indicator does not yield an upper bound of the error in 
general, and the validity is dependent from the regularity of the real solution. Therefore 
convergence cannot be ensured. Furthermore, the proposed po~t-processing~~ might not yield 
superconvergence for strongly unstructured meshes due to the loss of accuracy within the blended 
interpolation. On the other hand this indicator can be easily computed and is used in this paper 
comparatively. Numerical experiments show that the Zienkiewicz and ZhuI3 indicator is effective 
for smooth solutions and polynomial degree p = 1. 

A PRIOR1 INDICATORS 

We have to decide between an indicator, concerning the model error of the problem, and a second 
one which controls the geometry of the adapted meshes. 

Error of the non-linear model 

It is obvious that the uniqueness of a solution cannot be guaranteed and only a local error 
analysis is possible. 

An a priori error indicator restricts the relative rotations with respect to the limits of the applied 
theory, i.e. moderate, large or finite rotation shell theory. The incremental rotations should be 
<8' in the case of moderate rotation theory, e.g. As shown in References 1 and 15, instead of the 
complete material deformation gradient Fh(xL)  = RhUh for deformations of the middle surface 
including initial curvatures, only the rotation can be controlled because Uh is near to the unity 
tensor for thin shells. Rh can be controlled by its linearization in the form 

The indicator then follows as 

VNL is an absolute measure, e.g. 7 N L  < 0.14 for moderate rotation theory. According to this bound, 
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the incremental load factor has to be limited. We could also bind a norm of the incremental 
rotations ASc, directly. 

Geometrically a priori indicators for mesh refining 

Two strategies of the h-method for plates and shells are realized 

(1) regular refinements of quadrangles with irregular (hanging) nodes and 
(2) irregular element refinement saving regular nodes. 

The latter is preferable in the case of non-linear theories because interpolations for irregular 
nodes are rather complicated. Nested approximation spaces with halvened element lengths are 
used. This is advantageous for multigrid method and other multilevel solution methods. The 
usual limitation for length ratio, scewness, aspect ratio and taper are regarded in the mesh 
generator. 

DESCRIPTION OF THE REFINEMENT STRATEGY FOR GEOMETRICALLY 
NON-LINEAR PROBLEMS 

In order to derive a suitable refinement strategy for geometrically non-linear problems we have to 
distinguish between two different kinds of problems.. There are a lot of slightly modified 
possibilities to obtain a refinement criterion in both cases. 

Following a geometrically non-linear load displacement pattern, the question of appropriate 
stresses for computing the error indicators arises. The Frechet directional derivative (35) might be 
used in order to compute a suitable stress increment for the application of a stress-based 
indicator.I2 But the derivative can be evaluated into various directions. First of all, we may 
choose the difference of displacements between two neighbouring configurations on the equilib- 
rium path. This strategy is prefered in this paper in very good agreement with the mathematical 
preliminaries of the section on a posteriori error estimates, and it is always applied without any 
numerical problems. Another possibility arises by using the first step of a Newton-Raphson 
iteration. 

From the computational point of view the computation of a Frechet directional derivative 
needs special efforts. We have to take care of special features for every finite element formulation, 
and the computer code has to be changed for every new element. Therefore it seems to be much 
easier to calculate the stresses of two neighbouring configurations on the equlibrium path. The 
differences between these stress states result in an allowable stress increment for adaptation. 
Finally the direct application of the whole stress state for evaluating the stress indicators gives in 
some cases good results too. 

The self-adaptive computation of bifurcation points needs an iterative strategy. We start with 
a coarse finite element mesh and try to detect the bifurcation point with a path following method, 
i.e. controlling the number of negative diagonal elements and the determinant. This method 
allows to find the single valued bifurcation point of interest. 

Then the normalized eigenvector is used in order to get a stress increment for computing the 
refinement criterion and for branch switching too. As mentioned above, different methods of 
getting a stress increment are possible, and this holds for the special case of bifurcation problems 
too. But the application of the Frechet derivative in the direction of the normalized eigenvector 
has proved to be the most effective one which results in the best-fitted meshes for analysing 
bifurcation problems. 

Following secondary paths after branch switching the actual displacement increment is used to 
construct a new stress increment for further adaptive refinement. 
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ASPECTS OF DIMENSIONAL ADAPTIVITY IN DISTURBED 2-D SUBDOMAINS 

Inrroduction and concepts 

Modeling of thin-walled beams, plates and shells as 1-D and 2-D BVPs  due to kinematical 
hypothesis, e.g. the normal hypotheses, is valid in undisturbed domains. Disturbances near 
supports and free edges, in the vicinity of concentrated loads and at thickness jumps cannot be 
described by 1-D and 2-D BVP’s. In these disturbed subdomains, dimensional adaptivity has to 
be performed with respect to the 3-D theory. Dimensional adaptivity (d adaptivity) coupled with 
an h or p adaptivity becomes necessary in oder to guarantee a reliable overall solution. 

The two different ways of realization are the ‘Reduction Model’ (RM) and the ‘Expansion 
Model’ (EM). RM starts from the 3-D model, checking the hypotheses of the 2-D 
within undisturbed subdomains (Table I (2b)). It is the proper mathematical way and can include 
different stages between the simple 2-D theory and the complete spatial formulation. A disadvan- 
tage is the need for a priori 3-D computations and the necessity of advanced elements, e.g. with the 

Table I. Strategies for h-p-p,-d adaptive finite-element methods solving 2-D BVP‘s 
with 3-D disturbances 

Expansion method 

(la) h-d adaptivity 
Startmesh 2-D 

displacement plate elements 
h-adaptivity 

heuristic estimator 
2-D + 3-D elements 

Advantages 
Small startmesh, 

main computations in 2-D domain 

Disadvantages 
Heuristic indicator for d-adaptivity + 

Controlling error rates in 2-D 
and decay lengths according 

to St. Venant’s principle 

(1 b) h-p,-d adaptivity 
Startmesh 2-D 

higher order h-p, elements 
h-p, adaptivity 

heuristic estimator 
2-D + 3-D elements 

Advantages 
Small startmesh, 

main computations in 2-D domain 
improved convergence relative to (la) 

-- 

Disadvantages 
Heuristic indicator for d-adaptivity + 

controlling error rates 2fD 
and decay lengths according 

to St. Venant’s principle 

Reduction method 

(2a) h-d adaptivity 
Startmesh 3-D 

order of elements higher than Q1 
h-adaptivity 

proper estimator 
3-D + 2-D elements 

Advantages 
Estimator from error analysis 

with upper bounds 
Disadvantages 

Big 3-D startmesh 
reduction of meshes 

(2b) hp-p,-d adaptivity 
Startmesh 3-D 

anisotropic h, volume elements 
h,-p,-d adaptivity 

estimator from error-analysis 
3-D + 2-D elements 

Advantages 

Asymptotic and improved 
convergence relative to (2a) 
smaller startmesh than (2a) 

Disadvantages 
Relatively big system of equations 

complicated mesh reduction 
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p t  version in thickness direction (multilevel hierachical p,-ph-d anisotropic elements). If the p or p ,  
algorithm is not included, h-d adaptivity is obtained (Table I (2a)). This method is not so effective 
as the h-p,-d adaptivity (Table I (2b)). 

EM starts from the 2-D model, changing to the 3-D model within disturbed subdomains using 
heuristic a priori indicators (e.g. decay length of singularities) and a posteriori indicators of the 
2-D and 3-D model (Table I (la)). This method is more effective if anisotropic h-p, elements are 
invoked (h-p,-d adaptivity Table I (lb)). Furthermore, EM is favourable in case of changing 
thickness and especially haunched plates, e.g. near columns, because hierarchical RM models 
become theoretically complicated in these cases. 

In Table I the advantages and disadvantages of these different models are summarized. In this 
paper, we want to discuss EM (Table I (la)). 

Additionally, our recent papers'. 15, l9 have been concerned with problems arising in the RM 
itrategy. Remark: Due to recent results, the heuristic estimation in EM is replaced by a proper 
:rror-estimator, when the estimators in (46), (47) are calculated from the 3D-system and boundary 
:onditions and if we furthermore add to (46), (47) the residuals in the element domains within the 
3D setting. Then the EM error estimators are proper ones like in RM. 

"ncept of the d-h adaptivity with the expansion method 

The basic concept of the combined multileveled h-d adaptivity procedure consists of stepwise 
:hecks of h adaptivity, of the St. Venant's principle applied to the 3-D elasticity problem and 
inally of the local error-evolution for 2-D indicators within the h-refinement. These are three 
nain steps of criteria for transition from h adaptivity to d-h adaptivity all of which have to 
Jecome active for d adaptivity. 
rhese indicators are as follows. 

Indicator: value of the local error indicator. The first check is the value of the local element 
error indicator (q,)  in the 2-D domain. The BabuSka and Miller" error indicator is used 
neglecting the residua within the element domains, i.e. restricting ourselves so far to the projected 
stress jumps at the element boundaries which is an approximation already for Q1 elements. 
Meanwhile, the complete residual error indicator has been implemented into the codes, i.e. even 
residua in the element domains. 

t: ; t i  : stress vectors at both sides of an element interface according to 

Cauchy's theorem -+ t +  = -t- (44) 

J( th)  is the jump of the approximated stress vector, where + denotes the section with positive 
co-ordinate increments 

J ( f h )  = t l  - (45) 

In this context the local Babuika-Miller" indicator is used in the following version for the h-d 
adaptivity 

which yields the resulting global error indicator 

In order to control dimensional adaptivity near edges we introduce the stress jumps at the system 
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boundaries (supported as well as free edges), 

J(th)system boundary = f h +  (48) 

If this error reaches a tolerance &.it, the indicators 2 and 3 must be checked. For qe < qkrit mesh 
refining is automatically stopped at this element. Summarizing, the local error indicator has to be 
larger than the tolerance q k r i t .  in order to check d adaptivity in the next step. 

Indicator: decay length of the local 2-0 error from 3-0 elasticity according to S t .  Venant’s 
principle. For plates and shells, the decay length is (2-3)t according to St. Venant’s principle (with 
t being the thickness of the structure), dependent on the type of the singularity, e.g. ln(r) OJ l/r. If 
the local element size is bigger than hkrit = 2.5t, then h adaptivity of the 2-D problem is applied. If 
the local element size is smaller than hkrit then the third indicator must be checked. 

Indicator: local error rate. At each refinement step of 2-D h adaptivity, the local error rate 8, is 

Refining mesh i into mesh i + 1, the evolution of the local error qz,,, + qz, , , , ,  defines the error 
computed from two successive meshes. 

rate as 

The element e(i+ is a daughter element of element e(i) .  The element area of qi+ is a quarter of 

For Q1 elements with sufficient regularity of the solution, the error rates are 
the element qi) (Figure 2). 

8 x 1/16 for normal improvement 

0 x 1/4 for less improvement (50) 

8 x 1/2 in case off deterioration 

In the following example of a hypar shell the critical error rate is chosen as = J1/32. If the 
local error rate is bigger than and the indicators 1 and 2 are activated, then the dimensional 
jump is realized regarding also a priori criteria for mesh generation. If the local error rate is 
smaller than the critical error rate and the indicators 1 and 2 are activated, then only h adaptivity 
in the 2-D subdomain is applied. Figure 3 shows the scheme of conditions for h-d adaptivity. 

Aspects of mesh generation, mainly the transition from 2-D to 3-0 domains 

The 3-D domain is connected with the 2-D domain with the help of kinematic transition 
elements. They are automatically generated when we switch from a 2-D element to a 3-D element. 
Transition elements generated at the same spatial position, e.g. transition between domains with 

Figure 2. Development of the error from element e,l, to some daughter element e ( i+ l , ,  see equation (49) 



2646 E. STEIN ET AL. 

Loop over all Elements e 

no I I yes 

no I 

-1 11 2D-2D Refinemen 2D-3D Transition 

Figure 3. Scheme of h-d criteria for 2-D refinement and 3-D transition in the expansion method of dimensional 
adaptivity 

the same dimension, are subsequently deleted (according to the rule: identical transition elements 
are deleted). 

The first error indicators (BabuSka-Miller indicator qe) of 2-D and 3-D elements are computed 
in the same way. The stresses at transition from 2-D to 3-D meshes are determined by using 
virtual 3-D elements for the 2-D modelling. Therefore, the computation of error indicators for the 
h-d adaption follows the same lines as for the h adaption in 3-D domains. 

Remarks on the robustness and validity of the expansion method 

Due to the fact that the three indicators Y]krit, h k r i t  and &it have to become active together the 
incremental and iterative process of d adaptivity showed up to be insensitive and stable with 
respect to changes of the start meshes and to the reasonable choice of tolerances for q k r i t ,  h k r i t  and 
&,it. The boundary conditions are controlled for the 3-D system such that boundary layers must 
show up. It is notable that the engineering insight into the results of the refinement process and 
the computational asymptotics of displacements and stresses permit a direct control of the 
reliability. 

Yet it has to be remarked that the error estimation of the 3-D model is principally not possible 
completely by checking the error rate with low p order h refinements within the 2-D plate model. 
By power expansions of the model error using orthogonal functions it can turn out that higher 
p modes are important in the layer zones. Then p j  adaptivity is necessarily controlled by 
anisotropic error estimators in the directions x j ,  j = 1 ,2 ,3 ,  especially in the normal direction x3 
( p ,  adaptivity)), see Table I and References 16-18. 

Several strategies are possible to overcome this within a mixed expansion-reduction method, 
namely, 

(i) checking the energy for higher p modes on element patches in order to select the dominant 
ones or 

(ii) checking the local convergence rates for h refinement and enlarge p if the rates 0, (see 
equation (49)) are larger than Okrit ,  i.e. if the local regularity of the solution is high enough. 
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The general goal is to balance reliability and effectivity by improving the solution and the model 
in a staggered, so to say ‘diagonal’ procedure. Of course the solution error must be always smaller 
than the model error. Further research using different levels of degenerated shell elements and 
3-D elements is in progress. Finally it should be mentioned that different philosophies of thinking 
are usual in engineering and mathematics. Engineers like to develop their models in a growing 
complexity (expansion) whereas mathematicians use deductive procedures from general to less 
complex models (reduction). 

EXAMPLES 

In this section we present three examples illustrating the effectiveness of the present refinement 
strategies. For h-d adaptivity, an infinite field of edge-supported hypar shells is investigated by 
one member of this field in the framework of the geometrically linear theory. The solution is 
compared with results obtained from a pure 2-D non-linear shell analysis. Adaptive computa- 
tions of both problems allow a comparison between geometrical linear and non-linear theory and 
shows especially the influence of d adaptivity at the supports. 

Next, we treat the post-buckling analysis (branch switching) of a simply supported cylinder. 
Adaptive meshes for the secondary equilibrium path give a deeper understanding of the buckling 
modes and the failure of these structures for practical engineering problems. 

Example for dimensional adaptivity 

Figure 4 shows the infinite hypar shell system. At the points denoted by the small circles the 
shells are supported (fixed in z direction at  the bottom surface). Four shells with uniform loads are 

Figure 4. System of four continuous hypar shells supported at the lower centre points, L = 10 rn, I = 0.2 rn, H = 2.5 rn, 
q = -5  x lo3 Nm-’, E = 1.0 x 108 kNm-*, u = 0, width of the support b = 0.625 m = (1/32)L. The system has 
symmetry conditions at each side and it is fixed on a simple column (a) system, (b) system data, (c) system with start 

mesh and a quarter of the system (d) start mesh for a quarter of the system 
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depicted in Figure 4(c). In Figure 4(b) the system datas are given, and Figure 4(d) shows the 
starting mesh. 

In Figure 5 the deformed mesh (with enlarged deformation) is shown with a 3-D discretized 
subdomain in the vicinity of the support. This result is calculated within the 6th step of h-d 
adaptivity. Figure 6 shows the zoomed supported area in order to obtain a more close view on 

Figure 5. Deformed mesh, scaled deformation with 6. step of h-d adaptivity 

Figure 6. Deformed mesh, scaled deformation, with 6. step of h-d adaptivity, zoomed in the vicinity of the support 

8 
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8 
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\ 
t.:: 
- -. . . . . . . . . . . .  
- 60 0 60 

S t g m a  x x  S i g m a  x x  S i g m a  x x  

Figure 7. Results of CT,, (MPa) at the points (a) x = 0.0 m, y = 0.3215 m, (b) x = 03125, y = 0.3125 m, (c) x = 0.625 m, 
y = 0.3125 m in Figure 4(b). The points (a) and (b) are at the support, the point (c) is close to the support 
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the 3-D domain. The uxx stresses near the support are presented in Figure 7. It is obvious that the 
kinematic hypothesis of the shell theory is not valid. 

In Figure 8 the error development with increasing number of d.o.f.’s (equations) is shown. 
Above 3588 d.o.f.’s the curve has a kink due to the activation of the dimensional jump. Q1 and Q2 
elements are applied in the 3-D domain. 

10000 
1 
100 1000 

I o g (  e q u a  t i o n  1 

Figure 8. Relative global error in the energy norm depending from the number of unknowns in douple-logarithmic scale, 
including the influence of d adaptivity. (-), Q1 elements in 3-D, (----), 4 2  elements in 3-D 

h 

Figure 9. Hyperbolic shell, geometrically non-linear analysis for an equally distributed vertical load p = I PrCl, 
PrLf = - 5.0 kNm- ’, (a)-(c) deformed adaptive meshes, (1086,2682,4092 d.0.f.). d vertical displacement U, of point A 
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Hyperbolic shell 

The hyperbolic shell in Figure 4 is investigated where Figure 9 shows the birds eye view of 
adaptive meshes and the deformed shell with a zooming factor of 5.0. The three successive 
refinements shown hold for a tip deflection of (1/3) H. The different meshes in comparison with 
Figure 5 result from geometrically linear vs. non-linear analysis. 

Adaptive post-buckling analysis of an axially loaded cylinder 

The buckling analysis of cylinders is of great importance for structural engineers, and there are 
many publications devoted to this subject. Figure 10 shows an axially loaded cylinder with 

Figure 10. Cylindrical shell, geometry and loading R = 100 m, L = 140 m, h = 2 m, E = 30. 103kNm-2, v = 0, 
P = ,I?,, Yer = 693.2kNm-' and start mesh in the eighth of shell 

1.06 

1.04 

0.98 

0.96 
degrees of freedom 

Figure 11.  Convergence properties of the adapted meshes with respect to the critical load of cylinder Figure 10 
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Figure 12. (a)-(h) Sequence of nested adapted meshes for the cylindrical shell, (101 1,1431,3205,4135,5187,6165,10 791, 
15 100 d.0.f.) 

Figure 13. Branch switching mode (4135,5187,6165 d.0.f.) approximated by a sequence of mesh refinements 
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vanishing lateral displacements on both edges. A quarter in the circumferential direction and one 
half of the length are considered. Only even-numbered deformation patterns in both directions 
are admitted. The lowest bifurcation load A,,, cannot be obtained by this restricted modelling, 
and therefore the whole system has to be investigated in general. The advantages of the presented 
adaptive concept are very striking. In this example six waves are expected in the circumferential 
direction and one wave over the length. 

The calculation is performed with the finite element formulation presented in section on 
introduction of this paper. As the underlying theory allows finite rotations it is very suitable for 
detecting secondary paths into deep post-buckling branches. 

Figure 11 displays the development of the calculated lowest bifurcation load for different types 
of adapted meshes. It is remarkable to note that the load factor does not change any more when 
the number of degrees of freedom has reached nearly 5000 unknowns which correspond to the 
third adapted mesh. Between the second and the third uniquely refined mesh there are still 
changes, and the numerical effort (O(n2))  to get results for the third uniquely refined mesh (7800 
d.o.f.'s) has to be compared with the automatic feedback analysis (max. 5000 d.o.f.'s) which shows 
its effectivity. 

CYLINDRICAL SHELL 

A Scaling 
with 
factor 3 

POSTBUCKLING 
COMPUTATION 
v = o  

0.0 

U" vertical displacement 

Figure 14. Adaptive computation of postbuckling equilibrium point P for cylindrical shell from Figure 10. (a) startmesh 
and scaled deformation ofan upper eighth of the cylinder, (b) horizontal displacement of point A, (c) vertical displacement 

of point B 
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Figures 12 (a-f) show how the refined zones spread out in the adapted meshes where the error 
indicators are evaluated close to the bifurcation point. Figures 12(g) and (h) show higher levels of 
mesh adaptation. Figures 13(a-c) display a series of refined meshes near the bifurcation point, 
Figures 12 (d-f), using the scaled branched eigenmode. 

The post-critical analysis of the cylinder with the starting mesh is given in Figures 14(a-c). 
Figure 14(a) shows the deformed start mesh at point P (see Figures 14(b) and (c)) of the 

DEFORMATION 
PATTERNS 
IN THE 
POSTCRITICAL 
BRANCH 
( Scaling factor 3. ) 

1 st 

ADAPTIVE 
MESH 
3928 DOF. 

2nd 

ADAPTIVE 
MESH 
4594 DOF. 

3rd 

ADAPTIVE 
MESH 
5675 DOF. 

Figure 15. (a)-(d) Sequence of nested adaptive meshes for post-critical equilibrium point P in (a) 
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post-critical solution branch. The resulting first, second and third adaptive meshes for further 
analysis of the post-critical branch are displayed in Figure 15. 

CONCLUSIONS 

An advanced refinement strategy is presented for geometrically non-linear problems. This 
strategy includes a shell element for finite rotations within the frame of Reissner-Mindlin 
kinematics and an error analysis for these shell problems. The known concept of adaptivity is 
theoretically expanded in order to get deeper insight into bifurcation problems and related 
questions. One main result of this paper is that the used concept of adaptivity is not possible 
directly at bifurcation points (because of non-unique solutions) and that asymptotic convergence 
cannot be obtained for locking dominated problems. What is evident is that the robustness of the 
chosen mechanical and numerical model has to be investigated separately. 

The whole strategy is completed by the dimensional adaptivity which allows a consistent and 
stable modelling and an iterative procedure for non-linear load-deflection curves and branch 
switching. The computer code was developed within our system INA-SP; it is a flexible tool for 
a rather general class of non-linear problems. 
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