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Abstract. Local mesh-refining algorithms known from adaptive finite element methods are
adopted for locally conservative and monotone finite volume discretizations of boundary value prob-
lems for steady-state convection-diffusion-reaction equations. The paper establishes residual-type
explicit error estimators and averaging techniques for a posteriori finite volume error control with
and without upwind in global H1- and L2-norms. Reliability and efficiency are verified theoretically
and confirmed empirically with experimental support for the superiority of the suggested adaptive
mesh-refining algorithms over uniform mesh refining. A discussion of adaptive computations in the
simulation of contaminant concentration in a nonhomogeneous water reservoir concludes the paper.
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1. Introduction. We consider the following convection-diffusion-reaction prob-
lem: Find u = u(x) such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu ≡ ∇ · (−A∇u + bu) + γu = f in Ω,

u = 0 on ΓD,

(−A∇u + bu) · n = g on Γin
N ,

−(A∇u) · n = 0 on Γout
N .

(1.1)

Here Ω is a bounded polygonal domain in Rd, d = 2, 3; A = A(x) is d× d symmetric,
bounded, and uniformly positive definite matrix in Ω; b is a given vector function;
n is the unit outer vector normal to ∂Ω; and f is a given source function. We
have also used the notation ∇u for the gradient of a scalar function u and ∇ · b
for the divergence of a vector function b in Rd. The boundary of Ω, ∂Ω is split
into Dirichlet, ΓD and Neumann, ΓN parts. Further, the Neumann boundary is
divided into two parts: ΓN = Γin

N ∪ Γout
N , where Γin

N = {x ∈ ΓN : n(x) · b(x)< 0} and
Γout
N = {x ∈ ΓN : n(x) · b(x) ≥ 0}. We assume that ΓD has positive surface measure.

This problem is a prototype for flow and transport in porous media. For example,
u(x) can represent the pressure head in an aquifer or the concentration of a chemical
that is dissolved and distributed in groundwater due to the processes of diffusion,
dispersion, and absorption. In many cases A = εI, where I is the identity matrix in

∗Received by the editors April 1, 2003; accepted for publication (in revised form) May 27, 2004;
published electronically March 31, 2005. This work was partially supported by NSF grant DMS–
9973328. It was finalized while the first author was a guest at the Isaac Newton Institute for
Mathematical Science, Cambridge, UK.

http://www.siam.org/journals/sinum/42-6/42542.html
†Institute of Mathematics, Humboldt University of Berlin, S172: Rudower Chausee 25, Unter den

Linden 6, 1099 Berlin, Germany (cc@math.hu-berlin.de).
‡Department of Mathematics, Texas A&M University, College Station, TX 77843-3368 (lazarov

@math.tamu.edu).
§Information Technology Division, Brookhaven National Laboratory, Bldg. 515, Upton, NY 11973

(tomov@bnl.gov).

2496



ADAPTIVE FINITE VOLUME METHODS 2497

Rd and ε > 0 is a small parameter. This corresponds to the important and difficult
class of singularly perturbed convection-diffusion problems (see, e.g., the monograph
of Ross, Stynes, and Tobiska [31]). In our computations we have used our approach
for grid adaptation for this type of problem as well. However, we do not claim that
the developed theory in this paper covers this important practical case. Further, u(x)
can be viewed as a limit for t = ∞ of the solution u = u(x, t) of the corresponding
time-dependent problem

ut + Lu = f, t > 0, x ∈ Ω(1.2)

with boundary conditions as above and an initial condition u(x, 0) = u0(x), where
u0 is a given function in Ω. Various generalizations, mostly considering nonlinear
terms, are possible and widely used in the applications. For example, γu is replaced
by a nonlinear reaction term γ(u), or the linear convective term bu is replaced by a
nonlinear flux b(u). In this work we follow the framework of the model problem (1.1)
and focus on its 3-D setting.

The development of efficient solution methods featuring error control is important
for various applications. Our study has been motivated by the research in ground-
water modeling and petroleum reservoir simulations (see, e.g., [19]). The solutions
of problems in that area exhibit steep gradients and rapid changes due to localized
boundary data, discontinuities in the coefficients of the differential equation, and/or
other local phenomena (for example, extraction/injection wells, faults, etc.). In order
to accurately resolve such local behavior, the numerical method should be able to
detect the regions in which the solution changes significantly and to refine the grid
locally in a balanced manner so that the overall accuracy is uniform in the whole
domain.

Equation (1.1) expresses conservation of the properly scaled quantity u over any
subdomain contained in Ω. In the context of groundwater, fluid flow u(x) is in general
either the water mass or the mass of the chemical dissolved in the water. Numerical
methods that have this property over a number of nonoverlapping subdomains that
cover the whole domain are called locally conservative. Finite volumes (control vol-
umes, box schemes), mixed finite elements, and discontinuous Galerkin methods have
this highly desirable property. The simplicity of the finite volume approximations
combined with their local conservation property and flexibility motivated our study.

There are few works related to a posteriori error estimates for finite volume meth-
ods. In [2] Angermann studied a balanced a posteriori error estimate for finite vol-
ume discretizations for convection-diffusion equations in two dimensions on Voronoi
meshes. The derivation of the error estimator is based on the idea of his previous work
[3] on the finite element method. The estimator for the finite volume method contains
two new terms which have been studied previously. Some extensions to Angermann’s
work related to more general situations in respect to space dimension and type of
control volumes can be found in Thiele’s dissertation [35]. Again, the ideas from
the finite element method were exploited in deriving an upper error estimate for the
space discretization of parabolic problems. In our paper we use a similar approach;
namely, the error estimates for the finite volume method are derived by using the
relation between the finite volume and finite element methods (see, e.g., [8]). We note
that, despite recent progress (see, e.g., the monographs [23, 26]), the theory of finite
volume methods is still under development. This in turn raises certain difficulties in
establishing an independent and sharp a posteriori error analysis for the finite volume
approximations.
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A posteriori error indicators and estimators for the finite element method have
been used and studied in the past two decades. Since the pioneering paper of Babuška
and Rheinboldt [6], the research in this field has expanded in various directions that
include the residual-based method (see the survey paper of Verfürth [36]), hierarchical-
based error estimators [9], estimators based on postprocessing of the approximate so-
lution gradient [37, 38], error estimators that control the error or its gradient in the
maximum norm, etc. One popular approach is to evaluate certain local residuals and
obtain the a posteriori error indicator by solving local Dirichlet or Neumann prob-
lems by taking the local residuals as data [6, 9]. Another variation of the method that
controls the global L2- and H1-norms of the error uses the Galerkin orthogonality,
a priori interpolation estimates, and global stability (see, for example, [21]). Further-
more, solving appropriate dual problems, instead of using the a priori interpolation
estimates, leads to error estimators controlling various kinds of error functionals [11].
Solving finite element problems in a space enriched by hierarchical bases functions
gives rise to hierarchical-based error estimators [9]. There are error estimators based
on optimal a priori estimates in a maximum norm [22]. Another type of error estima-
tor/indicator, widely (and in most cases heuristically) used in many adaptive finite
element codes, is based on postprocessing (averaging) of the approximate solution
gradient (see [37, 38]). In the context of the finite element method for elliptic partial
differential equations, averaging or recovery techniques are justified in [10, 14, 30]. Fi-
nally, for an extensive study of the efficiency and the reliability of the local estimators
and indicators for finite element approximations, we refer to the recent monograph of
Babuska and Strouboulis [7].

In this paper we adapt the finite element local error estimation techniques to
the case of finite volume approximations. We consider mainly the residual-based
a posteriori error estimators and analyze the one that uses Galerkin orthogonality,
a priori interpolation estimates, and global stability in L2- and H1-norms. Our theo-
retical and experimental findings are similar to those in [2] and could be summarized
as follows. The a posteriori error estimates in the finite volume element method are
quite close to those in the finite element method, and the mathematical tools from
finite element theory can be successfully applied for their analysis. Our computa-
tional experiments with various model problems confirm this conclusion. For more
computational examples we refer to [25].

The paper is organized as follows. We start with the finite volume element for-
mulation in section 2. The section defines the used notation and approximations and
gives some general results from the finite volume approximations. Section 3 studies
the residual-based error estimator, followed by a short description of the used adaptive
refinement strategy (in section 4). Finally, in section 5, we present numerous compu-
tational results for 2-D and 3-D test problems which illustrate the adaptive strategy
and support our theoretical findings.

2. Finite volume element approximation. Subsection 2.1 introduces the no-
tation used in the paper. In subsection 2.2 we define the finite volume element ap-
proximations and give an a priori estimate for the error.

2.1. Notation. We denote by L2(K) the square-integrable real-valued functions
over K ⊂ Ω, by (·, ·)L2(K) the inner product in L2(K), and by | · |H1(K) and || · ||H1(K),
respectively, the seminorm and norm of the Sobolev space H1(K), namely,

||u||L2(K) := (u, u)
1/2
L2(K), |u|H1(K) := (∇u,∇u)

1/2
L2(K),

||u||2H1(K) := ||u||2L2(K) + |u|2H1(K).
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In addition, if K = Ω, we suppress the index K and also write (·, ·)L2(Ω) := (·, ·) and
|| · ||L2 := || · ||. Further, we use the Hilbert space H1

D(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}.

Finally, we denote by H1/2(∂K) the space of the traces of functions in H1(K) on the
boundary ∂K.

To avoid writing unknown constants we use the notation a � b instead of the
inequality a ≤ Cb, where the constant C is independent of the mesh size h.

In our analysis we shall use the following simple inequality valid for Ω ⊂ Rd, d > 1,
with Lipschitz continuous boundary ∂Ω (called Ilin’s inequality; cf., e.g., [28]): Let
Ωδ be a strip along ∂Ω of width δ. Then

||u||L2(Ωδ) � δ1/2||u||H1(Ω) for all u ∈ H1(Ω);

||u||L2(Ωδ) � δs||u||Hs(Ω) for all u ∈ Hs(Ω), 0 < s < 1/2.
(2.1)

The first inequality is trivial in the case where Ω is a half-space and u has a compact
support. The proof in the general case will follow easily by using partition of unity
and transforming each subdomain into half-space. The second inequality is obtained
using the fact that ||u||L2(Ωδ) � δ||u||H1(Ω) for all u ∈ H1

0 (Ω) and interpolation of
Banach spaces (cf., e.g., [1]).

Next, we introduce the bilinear form a(·, ·) defined on H1
D(Ω) ×H1

D(Ω) as

a(u, v) := (A∇u− bu,∇v) + (γu, v) +

∫
Γout
N

b · n u v ds.(2.2)

We assume that the coefficients of problem (1.1) are such that
(a) the form is H1

D(Ω)-elliptic (coercive); i.e., there is a constant c0 > 0 such that

c0||u||H1 ≤ a(u, u) for all u ∈ H1
D(Ω);(2.3)

(b) the form is bounded (continuous) on H1
D(Ω); i.e., there is a constant c1 > 0

such that

a(u, v) ≤ c1||u||H1 ||v||H1 for all u, v ∈ H1
D(Ω).(2.4)

The above two conditions guarantee that the expression a(u, u) is equivalent to
the norm in H1

D(Ω). Further, we shall use the notation ||u||2a = a(u, u) and call this
expression the “energy” norm.

A sufficient condition for the coercivity of the bilinear form is γ(x)+0.5∇·b(x) ≥ 0
for all x ∈ Ω, while a sufficient condition for the continuity is boundedness of the
coefficients A(x), b(x), and γ(x) in Ω. Further in the paper we assume that these
conditions are satisfied. Then (1.1) has the following weak form: Find u ∈ H1

D(Ω)
such that

a(u, v) = F (v) := (f, v) −
∫

Γin
N

gv ds for all v ∈ H1
D(Ω).(2.5)

2.2. Approximation method. The domain Ω is partitioned into triangular
(for the 2-D case) or tetrahedral (for the 3-D case) finite elements denoted by K. The
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Fig. 1. Left: Finite element and finite volume partitions in two dimensions. Right: Con-
tribution from one element to control volume Vi, γij , and γik in three dimensions; point q is the
element’s medicenter. Internal points for the faces are the medicenters of the faces.

elements are considered to be closed sets and the splitting, often called triangulation
of Ω, is denoted by T . We assume that the mesh is aligned with the discontinuities of
the coefficients of the differential equation (if any), with the data f and g, and with
the interfaces between ΓD, Γout

N , and Γin
N .

We note that our analysis will be valid also for domains with smooth boundaries.
In this case we have to modify the triangulation so that the methods do not lose
accuracy due to approximation of the domain. Such schemes have been discussed
in [18].

We introduce the set Nh = {xi : xi is a vertex of element K ∈ T } and denote by
N0

h the set of all vertices in Nh except those on ΓD. For a given vertex xi we denote
by Π(i) the index set of all neighbors of xi in Nh, i.e., all vertices that are connected
to xi by an edge.

For a given finite element triangulation T , we construct a dual mesh T ∗ (based
upon T ), whose elements are called control volumes (boxes, finite volumes, etc.).
There are various ways to introduce the control volumes. Almost all approaches can
be described in the following general scheme. In each element K ∈ T a point q is
selected. For the 3-D case, on each of the four faces xixjxk of K a point xijk is
selected and on each of the six edges xixj a point xij is selected. Then q is connected
to the points xijk, and in the corresponding faces, the points xijk, are connected to
the points xij by straight lines (see Figure 1). Control volume associated with a vertex
xi is denoted by Vi and defined as the union of the “quarter” elements K ∈ T , which
have xi as a vertex (see Figure 1). The interface between two control volumes, Vi and
Vj , is denoted by γij , i.e., V i ∩ V j = γij .

We assume that T is locally quasi uniform, that is, for K ∈T , |K|� ρ(K)d,
where ρ(K) is the radius of the largest ball contained in K and |K| denotes the area
or volume of K. In the context of locally refined grids, this means that the smallest
interior angle is bounded away from zero and any two neighboring finite elements are
of approximately the same size, whereas elements that are far away may have quite
different sizes.

In our 3-D computations q is the center of gravity of the element K, xijk are the
centers of gravity of the corresponding faces, and xij are the mid-points (centers of
gravity) of the corresponding edges (as shown on Figure 1).
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Fig. 2. Control volumes with circumcenters as internal points (Voronoi meshes) and interface
γij of Vi and Vj . The rightmost picture shows the segments βi in bold.

In two dimensions, another possibility is to choose q to be the center of the
circumscribed circle of K. These types of control volumes form Voronoi or perpen-
dicular bisector (PEBI) meshes (see, e.g. [23, pp. 764, 825]). Then obviously, γij are
the PEBIs of the three edges of K (see Figure 2). This construction requires that
all finite elements are triangles of acute type, which we shall assume whenever such
triangulation is used.

We define the linear finite element space Sh as

Sh = {v ∈ C(Ω) : v|K is affine for all K ∈ T and v|ΓD
= 0}

and its dual volume element space S∗
h by

S∗
h = {v ∈ L2(Ω) : v|V is constant for all V ∈ T ∗ and v|ΓD

= 0}.

Obviously, Sh = span{φi : xi ∈ N0
h} and S∗

h =span{χi : xi ∈ N0
h}, where φi denotes

the standard nodal linear basis function associated with the node xi, and χi denotes
the characteristic function of the volume Vi. Let Ih : C(Ω) ∩ H1

D(Ω) → Sh be the
interpolation operator and I∗h : C(Ω) ∩H1

D(Ω) → S∗
h and P ∗

h : C(Ω) ∩H1
D(Ω) → S∗

h

be the piecewise constant interpolation and projection operators:

Ihu =
∑

xi∈Nh

u(xi)φi(x), I∗hu =
∑

xi∈Nh

u(xi)χi(x), and P ∗
hu =

∑
xi∈Nh

ūiχi(x).

Here ūi is the averaged value of u over the volume Vi for xi ∈ N0
h , i.e., ūi =∫

Vi
u dx/|Vi|, and ūi = 0 for xi ∈ ΓD. In fact, Ih also makes sense as an interpolation

operator from S∗
h to Sh. Namely, if v∗ ∈ S∗

h, then Ihv
∗ ∈ Sh and Ihv

∗(xi) = v∗(xi).
Further, for v∗ ∈ S∗

h, we use the notation v∗i = v∗(xi). We also define the “total
flux” and its approximation by

σ := −A∇u + bu, σh := −A∇huh + buh

and assume that the coefficients A(x) and b(x) are elementwise smooth. Also, we
denote by ∇h· the T -piecewise divergence and by ∇h the T -piecewise gradient. Inte-
grals involving piecewise quantities are considered as sums over the pieces where the
quantities are defined.

The finite volume element approximation uh of (1.1) is the solution to the follow-
ing problem: Find uh ∈ Sh such that

ah(uh, v
∗
h) := A(uh, v

∗
h) + C(uh, v

∗
h) = F (v∗h) for all v∗h ∈ S∗

h.(2.6)
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Here the bilinear forms A(uh, v
∗) and C(uh, v

∗) are defined on Sh×S∗
h and the linear

form F (v∗) is defined on S∗
h. They are given by

A(uh, v
∗) =

∑
xi∈N0

h

v∗i

(
−
∫
∂Vi\ΓN

(A∇huh) · nds +

∫
Vi

γuhdx

)
,(2.7)

C(uh, v
∗) =

∑
xi∈N0

h

v∗i

∫
∂Vi\Γin

N

(b · n) uh ds,(2.8)

F (v∗) =
∑

xi∈N0
h

v∗i

{∫
Vi

fdx−
∫
∂Vi∩Γin

N

g ds

}
.(2.9)

Obviously, ∇·σh is well defined over Vi ∩K for all Vi ∈ T ∗ and K ∈ T . This ensures,
in particular, that the surface integrals in (2.7) and (2.8) exist.

In addition to C(uh, v
∗) we introduce the form Cup(uh, v

∗) that uses upwind
approximation. Approximation (2.7)–(2.9) can be used for moderate convection fields
and dominating diffusion. For small diffusion, for example, when A = εI with ε small,
approximation (2.7)–(2.9) gives oscillating numerical results, which we would like to
avoid. We are interested in approximation methods that produce solutions satisfying
the maximum principle and are locally conservative. Such schemes are also known as
monotone schemes (see, e.g., [24, 31]). A well-known sufficient condition for a scheme
to be monotone is that the corresponding stiffness matrix be an M -matrix (see [33,
pp. 182, 260] and [31, p. 202]).

The upwind approximation that we use for problems with large convection (or
small diffusion) is locally mass conservative and gives the desired stabilization. We
split the integral over ∂Vi on integrals over γij = ∂Vi∩∂Vj (see Figure 1) and introduce
out-flow and in-flow parts of the boundary of the volume Vi. This splitting can be
characterized by the quantities (b · n)+ = max(0, b · n) and (b · n)− = min(0, b · n),
where n is the outer unit vector normal to ∂Vi. Then we introduce

Cup(uh, v
∗) =

∑
xi∈N0

h

v∗i

{ ∑
j∈Π(i)

∫
γij

(
(b · n)+uh(xi) + (b · n)−uh(xj)

)
ds

+

∫
Γout
N ∩∂Vi

(b · n)uh(xi) ds

}
.(2.10)

This approximation is well defined for any b. In order to avoid technicalities in our
analysis we assume that the vector field b is piecewise smooth and has small variation
over each finite element. Thus, the quantity b · n does not change sign over γij .

The upwind finite volume element approximation uh of (1.1) becomes the follow-
ing: Find uh ∈ Sh such that

aup
h (uh, v

∗) := A(uh, v
∗) + Cup(uh, v

∗) = F (v∗) for all v∗ ∈ S∗
h.(2.11)

This is an extension of the classical upwind approximation of the convection term and
is closely related to the discontinuous Galerkin approximation (see, e.g., [22]) or to
the Tabata scheme for the Galerkin finite element method [34]. It is also related to
the scheme on Voronoi meshes derived by Mishev [27]. A different type of weighted
upwind approximation on Voronoi meshes in two dimensions has been studied by
Angermann [2].
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3. A posteriori error analysis. This section is devoted to the mathematical
derivation of computable error bounds in the energy norm. Throughout this section,
u ∈ H1

D denotes the exact solution of (2.5) and uh ∈ Sh denotes the discrete solution
of either (2.6) or (2.11). Then, e := u − uh ∈ H1

D(Ω) is the (unknown) error and
e := P ∗

he ∈ S∗
h is its T ∗-piecewise integral mean. We denote by E the set of all

interior edges/faces in T , respectively, in two/three dimensions. Also, for a vertex
xi ∈ N0

h let βi := Vi ∩ E (see Figure 2). For any E ∈ E let [σh] · n denote the jump
of σh across E in normal to E direction n. The orientation of n is not important as
long as the jump is in the same direction. In general, if n is present in a boundary
integral, it will denote the outward unit vector normal to the boundary. With every
element K ∈T , edge/face E ∈ E , and volume Vi ∈ T ∗ we associate local mesh size
denoted correspondingly by hK , hE , and hi. Since the mesh is locally quasi uniform
the introduced mesh sizes are locally equivalent, i.e., bound each other from above
and below with constants independent of the mesh size. Then, we introduce a global
discontinuous mesh size function h(x), x ∈ Ω, that assumes value hK , hE , and hi

depending on x ∈ K \ ∂K, x ∈ E, or x = xi, respectively. Finally, we use the
following shorthand notation for integration over all faces E in E :∫

E
vds :=

∑
E∈E

∫
E

vds, ‖v‖L2(E) :=
∑
E∈E

∫
E

v2ds.

3.1. Energy-norm a posteriori error estimate of the scheme without
upwind. We consider problem (2.6) and begin our analysis with the case when the
form C(·, ·) is evaluated by (2.8). We first give a representation of the error and
introduce some locally computable quantities. In Theorem 3.1 we show that these
quantities give a reliable estimate for the error. Further, we introduce the error
estimator, based on local “averaging” of the “total flux” σ over the control volumes,
and show that this estimator is reliable up to higher order terms.

The following lemma gives a representation of the error.
Lemma 3.1. Assume that the bilinear form a(·, ·) satisfies (2.3) and (2.4). Then

for the error e = u − uh, where u is the solution of (2.5) and uh is the solution of
(2.6), we have

‖e‖2
a = (f −∇h · σh − γuh, e− e) −

∫
E
[σh] · n (e− e) ds

−
∫

Γin
N

(g − σh · n) (e− e) ds−
∫

Γout
N

(A∇huh) · n (e− e) ds.(3.1)

Proof. We take v = e ∈ H1
D(Ω) in (2.5) and use the definition of a(·, ·) by (2.2)

to get

a(e, e) = a(u, e) − a(uh, e)

= (f − γuh, e) + (σh,∇e) −
∫

Γin
N

ge ds−
∫

Γout
N

(b · n)uh e ds.

We integrate the second term on the right-hand side by parts on each element K ∈T :∫
K

σh · ∇e ds =

∫
∂K

(σh · n)e ds−
∫
K

e∇ · σh dx.
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The sum over all elements yields the jump contributions [σh]·n along E and eventually
proves

a(e, e) = (f −∇h · σh − γuh, e) −
∫
E
[σh] · n e ds

−
∫

Γin
N

(g − σh · n)e ds−
∫

Γout
N

(A∇huh) · n e ds.(3.2)

It remains to be shown that the preceding right-hand side vanishes if e is replaced by
e. For each control volume Vi we have from (2.6)–(2.8) that∫

∂Vi\ΓN

σh · nds =

∫
Vi

(f − γuh) dx−
∫
∂Vi∩Γout

N

(b · n)uh ds−
∫
∂Vi∩Γin

N

g ds.

The Gauss divergence theorem is applied to each nonvoid K ∩ Vi, K ∈ T , so that the
left-hand side of the above inequality becomes∫

∂Vi\ΓN

σh · nds =

∫
Vi

∇h · σh dx +

∫
βi

[σh] · nds−
∫
∂Vi∩ΓN

σh · nds.

The difference of the preceding two identities is multiplied by e(xi) and summed over
all control volumes. This results in

0 = (f −∇h · σh − γuh, e) −
∫
E
[σh] · n e ds−

∫
Γin
N

(g − σh · n) e ds−
∫

Γout
N

A∇huh · n e ds.

Subtracting this identity from (3.2) concludes the proof of (3.1).
Motivated by the above considerations we introduce the following locally com-

putable quantities that play a major role in the design of adaptive algorithms and
their a posteriori error analysis.

Definition 3.1. Set

RK(x) := (f −∇ · σh − γuh)(x), x ∈ K,

RE(x) := ([σh] · n)(x), x ∈ E, for E ∩ ΓN = ∅,

Rin
E (x) := (g − σh · n)(x), x ∈ E, for E ⊂ Γin

N ,

Rout
E (x) := (A∇uh · n)(x), x ∈ E, for E ⊂ Γout

N

and define

ηR := ‖hRK‖L2(Ω), ηE := ‖h1/2 RE‖L2(E),

ηN := ‖h1/2 Rin
E‖L2(Γin

N ) + ‖h1/2 Rout
E ‖L2(Γout

N ).

Lemma 3.2. Suppose that RE ∈ L2(E) and that the partitioning T of Ω is locally
quasi uniform. Then∫

E
[σh] · n(e− e) ds � ηE ‖∇e‖ for any e ∈ H1

D(Ω),

where the constant in the notation � depends only on the shape of the elements in T
and the volumes in T ∗.
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Proof. A well-established trace inequality (cf., e.g., [12, Theorem 1.6.6] or [15,
Theorem 1.4]) and scaling argument lead to

h
1/2
E ‖v‖L2(E) � ‖v‖L2(K) + hE‖∇v‖L2(K)(3.3)

for all v ∈ H1(K) and edges E of an element K ∈ T . An application to v := e− e on
each K ∩ Vi, where K ∈ T and xi ∈ Nh, leads to∫

βi

[σh] · n(e− e) ds ≤ ‖[σh] · n‖L2(βi)‖e− e‖L2(βi)

� h
1/2
i ‖[σh] · n‖L2(βi)(h

−1
i ‖e− e‖L2(Vi) + ‖∇e‖L2(Vi)).

Further, Poincaré’s inequality for xi ∈ N0
h (in which case

∫
Vi

(e − e) dx = 0) or

Friedrichs’s inequality for xi ∈ Nh\N0
h (in which case e = 0 on Vi and e = 0 on

∂Vi ∩ ΓD) shows that

h−1
i ‖e− e‖L2(Vi) � ‖∇e‖L2(Vi).(3.4)

Poincaré’s, respectively, Friedrichs’s, inequality is valid in this case because the vol-
umes Vi are star shaped w.r.t. a ball of radius ∼ hi, which follows from the quasi
uniformity of T and our choice of T ∗. Substituting the last result into the preceding
inequality yields∫

βi

[σh] · n(e− e) ds � ‖h1/2 [σh] · n‖L2(βi)‖∇e‖L2(Vi)

for all xi ∈ Nh. A summation over all vertices yields the assertion.
Below we establish that the sum of the quantities ηR, ηE , and ηN gives a reliable

estimate for the error in the global energy norm.
Theorem 3.1. Assume that the coefficients of the bilinear form a(·, ·) are such

that (2.3) and (2.4) are satisfied, and that the partitioning T of Ω is locally quasi
uniform. Then

‖e‖a � ηR + ηE + ηN .

The constant in this inequality depends on the constants c0 in (2.3) and c1 in (2.4),
and on the shape of the elements in T and T ∗, but is independent of h.

Proof. The identity (3.1) of Lemma 3.1 represents ‖e‖2
a as a sum of four terms.

We bound the first term using Cauchy’s inequality, the second one using Lemma 3.2,
and the remaining two terms using again Cauchy’s inequality:

‖e‖2
a � ηR‖h−1(e− e)‖ + ηE‖∇e‖ + ηN‖h−1/2(e− e)‖L2(ΓN ).

Inequality (3.4) is combined with the trace inequality (3.3) to obtain

‖h−1/2(e− e)‖2
L2(ΓN )+ ‖h−1(e− e)‖2 �

∑
xi∈Nh

(h−2
i ‖e− e‖2

L2(Vi)
+ ‖∇e‖2

L2(Vi)
)�‖∇e‖2.

Condition (2.3) yields ‖∇e‖ � ‖e‖a and this concludes the proof of the theo-
rem.

Now we introduce an error estimator that is based on local averaging (post-
processing) of the “total flux” σh. For finite element approximations this estimator,
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often called the ZZ-estimator, has been justified by Carstensen and Bartels [10, 14]
and Rodriguez [30].

Definition 3.2. Let Pi be the L2-projection onto the affine functions on Vi. We
define the error indicator ηZ for A(x) and b(x) smooth over the volumes Vi ∈ T ∗ as

ηZ :=

( ∑
xi∈Nh

‖σh − Piσh‖2
L2(Vi)

)1/2

.

Remark 3.1. In our numerical experiments we have allowed A(x) to have jumps
that are aligned with the partition T . In such cases we have changed the projection Pi.
For example, if Vi = V 1

i ∪V 2
i and A(x) is smooth on V 1

i and V 2
i but has jumps across

their interface, then Pi is defined in a piecewise way as

‖σh − Piσh‖2
L2(Vi)

= ‖σh − P 1
i σh‖2

L2(V 1
i ) + ‖σh − P 2

i σh‖2
L2(V 2

i ),

where P 1
i and P 2

i are the L2-projections on the affine functions on V 1
i and V 2

i ,
respectively.

To simplify our notation we shall use the concept of “higher order terms” (h.o.t.).
Since the finite volume scheme at hand is of first order for u ∈ H2(Ω), i.e., ‖e‖a � h,
then it is reasonable to denote all terms that tend to zero faster than O(h) by h.o.t.
Below, we shall refer to the following quantities as h.o.t.:

(a) ‖h2 ∇(γuh)‖L2(Ω) for γ ∈ H1(Ω);
(b) ‖h2 ∇f‖L2(Ω) if f ∈ H1(Ω);
(c) ‖hf‖L2(ΩD) if f ∈ Hs(Ω), s > 0, and ΩD := ∪{Vi : xi ∈ Nh ∩ ΓD} is a strip

of width h around ΓD (to show that this quantity is h.o.t. we apply Ilin’s
inequality (2.1) and get ‖hf‖L2(ΩD) � h1+s‖f‖Hs(Ω), s < 1/2);

(d) h
1/2
E ‖g − ḡ‖L2(E) for ḡ =

∫
E
gds/|E| and g ∈ H1(E) for E ⊂ Γout

N ;

(e) denote by r̃(x) a linear approximation of r(x) on K. Thus, ˜∇ ·A and ∇̃ · b
are linear approximations on K of ∇ ·A and ∇ · b, respectively. Here ∇ ·A is
understood as a vector with components divergence of the rows of A(x). If

A and b are sufficiently smooth on K, then ∇ ·A− ˜∇ ·A and ∇ · b−∇̃ · b are
h.o.t.

More generally, if functions α(h), β(h), and γ(h) satisfy α(h) ≤ β(h) + γ(h) and
γ(h)/β(h) → 0 as h → 0, we will denote γ(h) as h.o.t. compared to β(h). In the case
above we have β(h) = h.

In the analysis that follows we derive a posteriori error estimates based on av-
eraging techniques. In the estimates derived the constants in � depend only on c0
from (2.3), c1 from (2.4), and the shape of the elements in T and T ∗. The h.o.t.
will account for the smoothness of the coefficients of the differential equation. The
smoothness requirements, as stated in the theorems below, yield h.o.t. of order O(h2),
i.e., one order higher than needed. Using standard results from interpolation of Ba-
nach spaces (cf., e.g., [1]) we can weaken the assumptions, requiring smoothness of
order ε > 0 less than that stated.

Lemma 3.3. Let the coefficients A and b be C1(Ω)-functions and let Pi be the
L2-projection onto the affine functions on Vi ∈ T ∗. Then

h
1/2
i ‖[σh] · n‖L2(βi) � ‖σh − Piσh‖L2(Vi) + h.o.t. for all Vi ∈ T ∗.(3.5)

The multiplicative constants in the notation � depend on the shape of the elements in
T and the shape of the control volumes in T ∗, while the h.o.t. depend on the smoothness
of the coefficients A and b.
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Proof. If A and b are polynomials, then σh|K is in a finite dimensional space for
any K ∈ T . In this case we easily prove (3.5) without h.o.t. by an equivalence-of-norm
argument on finite dimensional spaces. Namely, both sides of (3.5) define seminorms
for finite dimensional σh. If ‖σh − Piσh‖L2(Vi) = 0 for some σh, then σh = Piσh on
Vi. Since Piσh is linear on Vi, this shows that σh is also linear. Therefore, the jump
[σh] is zero on βi, i.e., the left-hand side of (3.5) vanishes as well. This proves that
the seminorm on the right-hand side is stronger than the seminorm on the left-hand
side and so proves (3.5). A scaling argument shows that the multiplicative constant
behind � is independent of hi.

The case when A and b are smooth functions but σh|K is not finite dimensional
over K ∈ T is treated using approximation. Namely, we introduce polynomial ap-
proximations σh of σh for any K ∈ T based on approximations of A and b, taking
into account that

‖σh − σh‖L2(Vi) = h.o.t. and ‖[σh − σh] · n‖L2(Vi) = h.o.t.,

and use the result for the finite dimensional case to get (3.5).
As a corollary we get the following inequality.
Corollary 3.1. Let the assumptions of Lemma 3.3 be satisfied. Then

ηE � ηZ + h.o.t.(3.6)

The above inequality follows directly by squaring (3.5) and summing over all
xi ∈ Nh.

Recall that ηZ is defined for internal vertex nodes. Below we show that ηZ
together with ηN can be used as an estimator for the H1-norm of the error modulus
of h.o.t.

Theorem 3.2. Let the assumptions of Lemma 3.3 be satisfied and let f ∈ H1(Ω).
Then

‖e‖a � ηZ + ηN + h.o.t.(3.7)

Proof. We use again the error representation from Lemma 3.1. In Theorem 3.1 we
have bounded the third and fourth sums from the error representation by ηN‖∇e‖ and
the second sum by ηE‖∇e‖. Further, ηE was bounded in Lemma 3.3 by ηZ + h.o.t.,
so it remains to establish the bound

(f −∇ · σh − γuh, e− e) � (ηZ + h.o.t.)‖∇e‖.

For xi ∈ N0
h denote by f and γuh the integral means over Vi of f and γuh, respectively.

Then we have∫
Vi

(f −∇h · σh − γuh)(e− e) dx =

∫
Vi

(f − f)(e− e) dx(3.8)

−
∫
Vi

∇h · (σh − Piσh)(e− e) dx−
∫
Vi

(γuh − γuh)(e− e) dx

≤ ‖e− e‖L2(Vi)

(
‖f − f‖L2(Vi) + ‖∇h · (σh − Piσh)‖L2(Vi)

+ ‖γuh − γuh‖L2(Vi)

)
.

Poincaré’s inequality gives

‖e− e‖L2(Vi) � hi‖∇e‖L2(Vi),

‖f − f‖L2(Vi) � hi‖∇f‖L2(Vi),(3.9)

‖γuh − γuh‖L2(Vi) � hi‖∇(γuh)‖L2(Vi).
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The term ‖∇h · (σh − Piσh)‖L2(Vi) is treated by the inverse estimate

‖∇h · (σh − Piσh)‖L2(Vi) � h−1
i ‖σh − Piσh‖L2(Vi) + h.o.t.(3.10)

As in the proof of Lemma 3.3, we first prove (3.10) when σh is finite dimensional by
equivalence of norms followed by a scaling argument and then, for the general case,
by a perturbation analysis. The combination of (3.8)–(3.10) shows

(3.11)∫
Vi

(f −∇h · σh − γuh)(e− e) dx � ‖∇e‖L2(Vi)

(
‖σh − Piσh‖L2(Vi) + h.o.t.

)
.

So far (3.11) holds for xi ∈ N0
h . For xi ∈ Nh ∩ ΓD we replace e, f , and γuh by zero

and deduce the first and third inequalities of (3.9) from Friedrichs’s inequality (notice
that e and γuh vanish on ΓD∩Vi). The inverse estimate (3.10) holds for xi ∈ Nh∩ΓD

as well. The aforementioned arguments prove (3.11) with ‖h2 ∇f‖L2(Vi) replaced by
‖h f‖L2(Vi). This shows

(f −∇h · σh − γuh, e− e) � (ηZ + ‖hf‖L2(ΩD) + h.o.t.)‖∇e‖.

The last result, the discussion at the beginning of the theorem, Ilin’s inequality (2.1),
and the ellipticity assumption conclude the proof of the theorem.

Theorem 3.3. Suppose that the coefficients A and b are C1(Ω)-functions, f ∈
H1(Ω), γ ∈ H1(Ω), g ∈ H1/2(E), and that the partitioning T of Ω is locally quasi
uniform. Then

ηZ + ηR + ηE + ηN � ‖e‖a + h.o.t.

Proof. We will prove that the quantities ηR, ηE , ηN , and ηZ are bounded by
C ‖e‖a + h.o.t. The h.o.t. appear by applying averaging techniques as in the proof of
Lemma 3.3 and therefore we will consider only the case when σh is finite dimensional.
First, we will bound the contributions to ηN due to Γin

N , namely, we will prove

‖h1/2 (g − σh · n)‖L2(Γin
N ) � ‖e‖a + h.o.t.(3.12)

We consider an element K ∈ T that has an edge/face E ⊂ Γin
N . We will use the pair

(K, E) in the rest of the proof (see Figure 3).

K

E ΓN
in

Fig. 3. The pair (K, E) of edge E ⊂ Γin
N and element K used in the proof of inequality (3.12).
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First, we note that

h
1/2
E ‖g − g‖L2(E) = h.o.t. for g :=

∫
E

g ds/|E|.

Then

‖g − σh · n‖L2(E) ≤ ‖g − g‖L2(E) + ‖g − σh · n‖L2(E) � ‖g − σh · n‖L2(E) + h.o.t.

We prove below that

‖g − σh · n‖L2(E) � h
−1/2
E ‖σ − σh‖L2(K) + h.o.t.

so that summation over all E ⊂ Γin
N yields (3.12).

Consider an edge-bubble function bE ∈ H1(Ω), bE ≥ 0, bE(x) = 0 on Ω \K and
∂K \ E, with properties∫

E

bE ds =

∫
E

ds, ‖bE‖L∞(K) � 1, ‖∇bE‖L∞(K) � 1/hE .(3.13)

A 2-D example of such a bubble is bE = 6φ1φ2, where φ1 and φ2 are the standard linear
nodal basis functions associated with the end points of the edge E. Let z ∈ H1(K)
be the harmonic extension of (g−σh ·n)bE from ∂K to K. The extension is bounded
in H1 [29, Theorem 4.1.1] on a reference element K̂ by the H1/2(Ê)-norm of the
extended quantity and, since all norms are equivalent on a finite dimensional space,
by its L2(Ê)-norm. Therefore, a scaling argument gives

h
1/2
E ‖∇z‖L2(K) + h

−1/2
E ‖z‖L2(K) � ‖bE(g − σh · n)‖L2(E).(3.14)

We define the linear operator PK into the space of polynomials of degree 2 on an
element K ∈ T as

(bK PKz, ph)L2(K) = (z, ph)L2(K)

for all polynomials ph of degree 2. Here bK ∈ H1(Ω), bK ≥ 0, is an element-bubble
function with properties

supp bK ⊂ K,

∫
K

bK ds =

∫
K

ds, ‖bK‖L∞(K) � 1, ‖∇bK‖L∞(K) � 1/hK .

A 2-D example of such a bubble is bK = 60φ1φ2φ3, where φ1, φ2, and φ3 are the
standard linear nodal basis functions associated with the vertices of the element K.
Then z̃ := z − bK PKz by construction has the properties

z̃ = (g − σh · n)bE on E, z̃ = 0 on ∂K\E,

(z̃, ph)L2(K) = 0 for all polynomials ph of degree 2.

Inequality (3.14) remains valid for z replaced by z̃ because of the following. Choosing
ph = PKz in the definition of PK yields

‖b1/2K PKz‖2
L2(K) = (z, PKz)L2(K) � ‖z‖L2(K)‖PKz‖L2(K).

We use norm equivalence on finite dimensional spaces on a reference element and scal-

ing to K to get that the quantities ||bKPKz||L2(K), ‖b1/2K PKz‖L2(K), and ‖PKz‖L2(K)
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are equivalent up to constants independent of h, and therefore ‖bKPKz‖L2(K) �
‖z‖L2(K). We use again the equivalence-of-norms argument, inverse inequality, and
the properties of z to get that

‖∇(bKPKz)‖L2(K) � ‖∇bK‖L2(K)‖PKz‖L2(K) + ‖bK∇(PKz)‖L2(K)

� h−1
E ‖PKz‖L2(K) + h−1

E ‖z‖L2(K)

� h
−1/2
E ‖bE(g − σh · n)‖L2(E).

Combined with the bound for ‖bKPKz‖L2(K), this completes the proof of (3.12) for
z = z̃.

Given a polynomial ph of degree 2, using the Gauss divergence theorem and the
properties of z̃, we deduce∫

E

bE(g − σh · n)(σ − σh) · nds =

∫
∂K

z̃(σ − σh) · nds

=

∫
K

(σ − σh) · ∇z̃ dx +

∫
K

z̃(∇·(σ − σh) − ph) dx

�
(
‖σ − σh‖L2(K) + hE‖∇·(σ − σh) − ph‖L2(K)

)
h
−1/2
E ‖bE(g − σh · n)‖L2(E).

Choosing proper ph in the second term of the last inequality makes that term h.o.t.
Indeed, write down first the equality (see the basic problem (1.1))

∇·(σ − σh) − ph = γu− f − (∇·A) · ∇uh + uh ∇· b + b · ∇uh − ph.(3.15)

Here ∇ ·A is understood as a vector with component divergence on the rows of A(x).

Let f̃ , γ̃u, ∇̃· b, b̃, and ˜∇ ·A be the linear approximations on K of f , γu, ∇· b, b, and
∇ ·A, respectively.

Now, we choose ph to be the following polynomial of degree 2 on K,

ph = γ̃u− f̃ − ( ˜∇ ·A) · ∇uh + uh∇̃· b + b̃ · ∇uh,

take the L2(K)-norm of (3.15), and use the triangle’s inequality to get

‖∇ · (σ − σh) − ph‖L2(K) ≤ ‖f − f̃‖L2(K) + ‖γu− γ̃u‖L2(K) + ‖uh(∇· b− ∇̃· b)‖L2(K)

+ ‖(b− b̃) · ∇uh‖L2(K) + ‖∇uh · (∇·A− ˜∇·A)‖L2(K)

�
(
‖u‖H2(K) + ‖uh‖H1(K)

)
h.o.t. + ‖hK∇f‖L2(K).

Therefore (note that g = σ · n on Γin
N ),

‖b1/2E (g − σh · n)‖2
L2(E) =

∫
E

z̃(g − g) ds +

∫
E

z̃(σ − σh) · nds

� h
−1/2
E

(
‖σ − σh‖L2(K) + h.o.t.

)
‖b1/2E (g − σh · n)‖L2(E)

and so

‖b1/2E (g − σh · n)‖L2(E) � h
−1/2
E ‖σ − σh‖L2(K) + h.o.t.

Using again the equivalence-of-norms estimate (equivalence of norms on finite dimen-
sional spaces on reference element and scaling)

‖g − σh · n‖L2(E) � ‖b1/2E (g − σh · n)‖L2(E)
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we finally prove that

‖g − σh · n‖L2(E) ≤ ‖g − g‖L2(E) + ‖g − σh · n‖L2(E)

� ‖b1/2E (g − σh · n)‖L2(E) + h.o.t.

� h
−1/2
E ‖σ − σh‖L2(K) + h.o.t.

Similarly, ‖A∇uh · n‖L2(E) � h
−1/2
E ‖σ − σh‖L2(K) + h.o.t. for E ⊂ Γout

N , which, com-
bined with the result for E ⊂ Γin

N , proves that ηN � ||e||a + h.o.t.
A similar technique shows that ηE � ‖e‖a + h.o.t.
The inequality ηR � ‖e‖a + h.o.t. can be proved in the following way. Take the

average R̄K of the residual RK := f −∇ · σh − γuh over an element K to derive

‖R̄K‖L2(K) ≤ ‖RK − R̄K‖L2(K) + ‖RK‖L2(K) = h.o.t. + ‖RK‖L2(K).

Further, apply the technique from Lemma 3.1 to deduce the equality (RK , bKR̄K)L2(K)

= a(e, bKR̄K) and therefore

(RK , bKR̄K)L2(K) = ‖b1/2K RK‖2
L2(K) − (RK , bK(RK − R̄K))L2(K) = a(e, bKR̄K)

� ‖e‖H1(K)‖bKR̄K‖H1(K) � ‖e‖H1(K)h
−1
K ‖R̄K‖L2(K)

� h−1
K ‖e‖H1(K)‖RK‖L2(K) + h.o.t.

Here we used the inverse inequality and the boundedness of the coefficients of the
differential equation (1.1). Then we take the term (RK , bK(RK − R̄K))L2(K) to the

right-hand side and consider it as h.o.t. Finally, use that ‖b1/2K RK‖L2(K) ≈ ‖RK‖L2(K)

to obtain

‖RK‖L2(K) � h−1
K ‖e‖H1(K) + h.o.t.

A summation over all K ∈ T yields the inequality ηR � ‖e‖a + h.o.t.
Now we prove the remaining inequality, ηZ � ‖e‖a + h.o.t. Since Pi is a linear

L2(Vi) projector, we have that

‖σh − Piσh‖L2(Vi) ≤ ‖σh − Piσ‖L2(Vi).

Adding and subtracting σ in the right-hand side and applying the triangle’s inequality
we get

‖σh − Piσ‖L2(Vi) ≤ ‖σh − σ‖L2(Vi) + ‖σ − Piσ‖L2(Vi) = ‖σh − σ‖L2(Vi) + h.o.t.

since ‖σ−Piσ‖L2(Vi) = h.o.t. for σ smooth. The summation over all xi concludes the
proof of the theorem.

3.2. Analysis of the upwind scheme in the H1-norm. This section is de-
voted to the case when an upwind approximation is applied to the convection term,
namely, we consider problem (2.11).

Definition 3.3. For an element K ∈ T we denote by γK := ∪γij (K ∩ γij) and
set

ηup
E :=

( ∑
K∈T

∑
γij⊂γK

‖h1/2b · n (uh(xi) − uh)‖2
L2(γij)

)1/2

,

ηup
N := ‖h1/2b · n ∇uh‖L2(Γout

N ).
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Theorem 3.4. Let the assumptions of Theorems 3.1 and 3.2 be satisfied, and let
the upwind approximation be applied to the convection term. Then

‖e‖a � ηZ + ηN + ηup
E + ηup

N + h.o.t.(3.16)

Proof. Since aup
h (uh, v

∗) = F (v∗) and ah(u, v∗) = F (v∗) for v∗ ∈ S∗
h we have

the orthogonality condition ah(u, v∗) − aup
h (uh, v

∗) = 0. Choosing v∗ = ē we get the
following representation for the energy norm of the error:

‖e‖2
a = a(e, e) − ah(u, ē) + aup

h (uh, ē)

= {a(e, e) − ah(e, ē)} + {aup
h (uh, ē) − ah(uh, ē)}

= {a(e, e) − ah(e, ē)} + {Cup
h (uh, ē) − Ch(uh, ē)} .

For the first term, a(e, e) − ah(e, ē), we use the same approach as in the analysis of
the scheme without upwind (see Lemma 3.1) and show that

a(e, e) − ah(u, e) = (f −∇h · σh − γuh, e− e) −
∫
E
[σh] · n (e− e) ds

−
∫

Γin
N

(g − σh · n) (e− e) ds−
∫

Γout
N

(A∇huh) · n (e− e) ds.(3.17)

This presentation allows us to use estimate (3.7) of Theorem 3.2.
For the second term, Cup

h (uh, ē) − Ch(uh, ē), we get

Cup
h (uh, ē) − Ch(uh, ē) =

∑
xi∈N0

h

ēi

{ ∑
j∈Π(i)

∫
γij

((b · n)+uh(xi)+(b · n)−uh(xj)−b · nuh) ds

+

∫
∂Vi∩Γout

N

(b · n uh(xi) − b · n uh) ds

}
.

Here the unit normal vector n on γij is oriented in such a way that b ·n ≥ 0. We want
to express the above sum as a sum over the elements. To do so we specify that the
indexes (ij) are oriented so that (xi − xj) · n ≤ 0. We get that

Cup
h (uh, ē) − Ch(uh, ē) =

∑
K∈Th

{ ∑
γij⊂K

(ēi − ēj)

∫
γij

b · n (uh(xi) − uh) ds

+
∑
Vi∩K

ēi

∫
∂Vi∩Γout

N

b · n (uh(xi) − uh) ds

}
.

We denote by [ē] := ei − ēj the jump of ē across γij and take into account that [ē −
e] = [ē]. Then, by the Schwarz inequality, the term involving the integral over γij
is bounded by C‖[e − ē]‖L2(γij) ‖b · n (uh(xi) − uh)‖L2(γij). As before, using trace,
Poincaré’s, and/or Friedrichs’s inequalities we get

‖[e− ē]‖L2(γij) � h
1/2
i ‖∇e‖L2(Vi),

which bounds the integrals over γij in the error representation with ηup
E .
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For the terms involving integration over Γout
N we have

|uh(xi) − uh(x)| ≤ |∇uh · t(x)|.|xi − x|.

Here t(x) is a unit vector along ∂Vi ∩K, an edge in two dimensions, or a face in three
dimensions. Then in two dimensions t is simply a unit vector perpendicular to n,
while in three dimensions t(x) depends on the position of x on the face and is again
perpendicular to n. In both cases |uh(xi) − uh(x)| ≤ |hK∇uh|. Using the Schwarz
inequality we bound the term involving integration over Γout

N in the following way:∑
Vi∩K

ēi

∫
∂Vi∩Γout

N

b · n (uh(xi) − uh) ds ≤ C‖∇e‖.‖h1/2b · n ∇uh‖L2(Γout
N ),

which eventually gives the term ηup
N in (3.16) and completes the proof.

3.3. Error estimates in L2. We use duality techniques to get error estimators
for different quantities of the error. In this subsection we will show how to use the
duality technique in order to derive an error estimator in the global L2(Ω)-norm for
the scheme without upwinding. The main assumption in this section is that the
solution of problem (1.1) is H2 regular.

Definition 3.4. We define the residual L2 a posteriori error estimator ρ̃ as

ρ̃ := (η̃2
R + η̃2

E + η̃2
N )1/2,(3.18)

where

η̃2
R := ‖h (RK − R̄K)‖2 + ‖h2 RK‖2,

η̃2
E := ‖h1/2 (RE − R̄E)‖2

L2(E) + ‖h3/2 RE‖2
L2(E),

η̃2
N := ‖h1/2 (Rin

E − R̄in
E )‖2

L2(Γin
N ) + ‖h3/2 Rin

E‖2
L2(Γin

N )

+ ‖h1/2 (Rout
E − R̄out

E )‖2
L2(Γout

N ) + ‖h3/2 Rout
E ‖2

L2(Γout
N ),

and R̄K , R̄E, R̄in
E , and R̄out

E are the K ∈ T , E ∈ E, E ∈ Γin
N , and E ∈ Γout

N piecewise
mean values of, correspondingly, RK , RE , R

in
E , and Rout

E introduced in Definition 3.1.
Our aim is to show that the estimator ρ̃ is reliable in the L2(Ω)-norm. The a

posteriori L2(Ω) error analysis involves the following continuous dual problem: Find
ẽ ∈ H1

D(Ω) such that

a(v, ẽ) = (e, v) for any v ∈ H1
D(Ω),(3.19)

where e is the exact error, defined as before.
Theorem 3.5. Let the solution ẽ of the dual problem (3.19) be H2(Ω) regular.

If the coefficients of our basic problem (1.1) are sufficiently regular, namely RK , RE,
Rin

E , and Rout
E are correspondingly in H1(K), H1/2(E), H1/2(Γin

N ), and H1/2(Γout
N ),

then the residual L2 a posteriori error estimator (3.18) from Definition 3.4 is reliable,
i.e., ‖e‖ � ρ̃.

Proof. Let v = e in (3.19) and argue as in the proof of Lemma 3.1 to show

‖e‖2 = a(e, ẽ) = (RK , ẽ− e∗) − (RE , ẽ− e∗)L2(E)

− (Rin
E , ẽ− e∗)L2(Γin

N ) − (Rout
E , ẽ− e∗)L2(Γout

N )(3.20)
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for an arbitrary e∗ ∈ S∗
h. To evaluate the right-hand side of this identity we use

the nodal interpolation operator Ih and its properties. If ẽ ∈ H2(Ω), the Sobolev
inequalities [12, Theorem 4.3.4] guarantee that Ihẽ is well defined. The properties of
the interpolant are well established in the finite element literature (see, for example,
[12]), namely,

h−2
K ‖ẽ− Ihẽ‖L2(K) + h−1

K |ẽ− Ihẽ|H1(K) + h
−3/2
K ‖ẽ− Ihẽ‖L2(∂K) ≤ CI,K |ẽ|H2(K).

(3.21)

Now, in (3.20) we choose e∗ = I∗hIhẽ so that ẽ−e∗ = (ẽ−Ihẽ)+(Ihẽ−I∗hIhẽ). Further,
we apply the Schwarz inequality on the integrals involving ẽ − Ihẽ and use (3.21) to
get the bound

(RK , ẽ− Ihẽ) − (RE , ẽ− Ihẽ)L2(E) − (Rin
E , ẽ− Ihẽ)L2(Γin

N ) − (Rout
E , ẽ− Ihẽ)L2(Γout

N )

�
(
‖h2 RK‖ + ‖h3/2 RE‖L2(E) + ‖h3/2 Rin

E‖L2(Γin
N ) + ‖h3/2 Rout

E ‖L2(Γout
N )

)
|ẽ|H2(Ω).

For the integrals involving Ihẽ − I∗hIhẽ we first note that if K is a fixed element in
T , then for every vertex xi of K, the quantities |K ∩ Vi| (volume in three dimensions
and area in two dimensions) are equal. Also, for vertices xi on the face/edge E we
have that the boundary quantities |E ∩ Vi| (area in three dimensions and length in
two dimensions) are also equal. Therefore,∫

K

(Ihẽ− I∗hIhẽ)dx = 0,

∫
E

(Ihẽ− I∗hIhẽ)ds = 0.

We apply the last fact to the integrals involving Ihẽ − I∗hIhẽ in order to subtract
from RK , RE , Rin

E , and Rout
E their mean values R̄K , R̄E , R̄in

E , and R̄out
E . Then, using

Schwarz and Poincaré inequalities we bound the term involving Ihẽ− I∗hIhẽ, namely,

|(RK , I∗hIhẽ− Ihẽ) − (RE , I
∗
hIhẽ− Ihẽ)L2(E) − (Rin

E , I∗hIhẽ− Ihẽ)L2(Γin
N )

− (Rout
E , I∗hIhẽ− Ihẽ)L2(Γout

N )|

�
(
‖h (RK − R̄K)‖ + ‖h1/2(RE − R̄E)‖L2(E)

+ ‖h1/2 (Rin
E − R̄in

E )‖L2(Γin
N ) + ‖h1/2 (Rout

E − R̄out
E )‖L2(Γout

N )

)
‖ẽ‖H2(K),

where we have used the inequality

‖Ihẽ− I∗hIhẽ‖L2(K) � hK |Ihẽ|H1(K) � hK |ẽ− Ihẽ|H1(K) + hK |ẽ|H1(K)

� h2
K |ẽ|H2(K) + hK |ẽ|H1(K) � hK |ẽ|H2(K).

Applying the above estimates, the stability of the dual problem with respect to
the right-hand side, ‖ẽ‖H2(Ω) ≤ C‖e‖, and obvious manipulations, we get that the
L2 a posteriori error estimator ρ̃ is reliable. Moreover, since the coefficients of
(1.1) are sufficiently regular we can apply Poincaré’s inequality to the terms ‖RK −
R̄K‖L2(K), ‖RE − R̄E‖L2(E), ‖Rin

E − R̄in
E‖L2(E), and ‖Rout

E − R̄out
E ‖L2(E) to get one

additional power of h that will make the error estimator of second order.
Note that we did not explicitly apply Poincaré’s inequality in the definition of

the error estimator in order to make it well defined for problems with less than that
stated in the theorem regularity.
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4. Adaptive grid refinement and solution strategy. In this section we
present the adaptive mesh refinement strategy that we use. It is based on the grid
refinement approach in the finite element methods (see, e.g., [11, 36]). A different grid
adaptation strategy, again in the finite element method, has been proposed, justified,
and used in [20].

For a given finite element partitioning T , desired error tolerance ρ, and a norm
in which the tolerance to be achieved is, say ||| · |||, do the following:

• compute the finite volume approximation uh ∈ Sh, as given in subsection 2.2;
• using the a posteriori error analysis, compute the errors ρK for all K ∈ T ;
• mark those finite elements K for which ρK ≥ ρ/

√
N ; here N is the number

of elements in T ;
• if

∑
K∈T ρ2

K > ρ2, then refine the marked elements;
• additionally refine until a conforming mesh is reached;
• repeat the above process until no elements have been refined.

For the 2-D case we refine marked elements by uniformly splitting the marked
triangles into four. The refinement to conformity is done by bisection through the
longest edge. For the 3-D version of the code the elements (tetrahedrons) are refined
using the algorithm described by Arnold, Mukherjee, and Pouly in [5].

The described procedure yields error control and optimal mesh (heuristics), which
are the goals in the adaptive algorithm. The nested meshes obtained in the process
are used to define multilevel preconditioners. The initial guess for every new level is
taken to be the interpolation of uh from the previous level.

5. Numerical examples. Here we present two sets of numerical examples to
test the our theoretical results. The first two examples are simple 2-D elliptic prob-
lems while the remaining tests illustrate our approach on 3-D problems of flow and
transport in porous media.

5.1. 2-D test problems. In Example 1 we consider problems with known solu-
tions and compare the behavior of the error estimators with the exact errors. Example
2 is for discontinuous matrix A(x) with an unknown solution.

Example 1. We consider three Dirichlet problems for the Poisson equation on
an L-shaped domain with known exact solutions u = r4/3 sin 4θ

3 (Problem 1), u =

r2/3 sin 2θ
3 (Problem 2), and u = r1/2 sin θ

2 (Problem 3). These functions belong to
H1+s(Ω) with s almost 4/3, 2/3, and 1/2, respectively. In Figure 4 we show the mesh
and the error for Problem 2 after four levels of local refinement.

The theory shows that the a posteriori error estimators ηE and ηZ are equivalent
to the H1-norm of the error. This theoretical result is confirmed by our computations,
which are summarized in Figure 5. The left picture gives the exact error (solid line)
and the a posteriori error estimators ηZ (dashed line) and ηE (dash-dotted line) for
the three problems over the different levels of the mesh. The levels are obtained
by uniform refinement (splitting every triangle into 4) and have 65, 255, 833, 3,201,
12,545, 49,665, and 197,633 nodes correspondingly for levels 1, . . . , 7. The errors are
printed in logarithmic scale in order to demonstrate the linear behavior of the error
as a function of the level. For exact solutions in H1+1/2−ε, H1+2/3−ε, and H1+4/3−ε

(ε > 0) one can see the theoretically expected rate of error reduction over the levels of
1/2, 2/3, and 1 correspondingly. One can observe that both ηZ and ηE are equivalent
to the exact error, as proved in the theoretical section. The same is true when the
local refinement method from section 4 is applied. The numerical results are given in
Figure 5, right. The y scale is again the error, and the x scale is the refinement level.
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Fig. 4. Locally refined mesh and the corresponding error after four levels of refinement.

Fig. 5. Comparison of the H1-norm of the error for solutions H1+4/3−ε (Problem 1), H1+2/3−ε

(Problem 2), and H1+1/2−ε (Problem 3) on a sequence of uniformly refined grids and for grids refined
locally by using the a posteriori error estimates. Left: Exact error, ηZ , and ηE for uniformly refined
grids. Right: Exact error, ηZ , and ηE for locally refined grids.

The error tolerances supplied to the refinement procedures are 0.0026 for Problem 1,
0.0122 for Problem 2, and 0.0385 for Problem 3. These are the exact errors for the
problems considered on level 7 of the uniformly refined mesh. The result shows that,
on the locally refined meshes, as in the uniform refinement case, both ηZ and ηE are
equivalent to the exact error. Another observation is that, although the meshes are
refined, only locally is the rate of error reduction over the refinement levels the same
as on the uniformly refined meshes (compare the error reduction slopes with the ones
in Figure 5, left).

Finally, we demonstrate the efficiency of the adaptive error control by giving
the number of the degrees of freedom (DOF) on the locally refined mesh levels from
Figure 5, right, and comparing them with the number of DOF on the uniformly refined
mesh levels (see Table 5.1). Note the difference in the order of the mesh sizes for
uniform refinement and local refinement for Problems 2 and 3. For Problem 1 we have
full elliptic regularity, and ηZ/ηE are supposed to lead to uniform refinement, which
is confirmed by the numerical experiment. The results demonstrate the efficiency of
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Table 5.1

Number of DOF for the levels resulting from local refinement based on the ηZ and ηE error
estimators. The error tolerances supplied to the refinement procedures are 0.0026 for Problem 1,
0.0122 for Problem 2, and 0.0385 for Problem 3 (see Example 1).

Uniform Problem 1 Problem 2 Problem 3
Level

mesh ηZ ηE ηZ ηE ηZ ηE
1 65 65 65 65 65 65 65
2 255 225 225 225 225 213 175
3 833 833 833 815 805 467 375
4 3201 3201 3201 2025 2080 940 695
5 12545 12545 12545 3990 4219 1461 1033
6 49665 49665 49665 5879 6249 1889 1357
7 197633 169618 197626 7322 7815 2183 1634
8 581852 8365 9034 2508 1776
9 9793 1892
10 10097 1986

Fig. 6. Convection-diffusion problem; the inhomogeneities are represented by three layers. Left:
The locally refined mesh after four levels of adaptive refinement (3,032 nodes and 5,910 triangles).
Right: The level curves of the solution.

applying local refinement based on ηZ and ηE for problems with singular solutions.
Example 2. We consider problem (1.1) with Ω shown in Figure 6. In this problem

ΓD is the upper boundary, b = (1,−0.5), and f = 0. The domain is taken to have
three layers (see Figure 6) with A(x) = 0.01 I in the top layer, 0.05 I in the internal
layer, and 0.001 I at the bottom. The Dirichlet boundary value is 1 for x < 0.2 and
0 otherwise. On the Neumann boundary we take g = 0. In this problem we have
used the upwind approximation (2.11) and the local refinement procedures based on
ηZ and ηE .

Since the exact solution is not known we judge the quality of the error estimators
ηZ and ηE by comparing the results with the ones on uniformly refined meshes. Also,
when choosing problems with known local behavior we expect the estimators to lead
to refinement that closely follows the local behavior of the solution profile. This is a
standard testing approach (see, for example, [4]).
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Fig. 7. Pressure computations for a nonhomogeneous reservoir. Left: Contour curves of the
pressure for the cross section x2 = 250. Right: Contour curves of the pressure for the cross section
x3 = 200.

Figure 6 shows the mesh on level 4 (left) with 3,032 nodes and 5,910 triangles.
On the right are the solution level curves. This particular mesh was obtained by
refinement based on ηZ with ρ = 4% of |uh|1 (≈ 0.1616, i.e., ρ = 0.006464). The
mesh obtained by four levels of uniform refinement has 38,257 DOF. The discrete
solutions have the same qualitative behavior in both cases. As expected, the mesh
refinement follows the discrete solution profile. Refinement based on ηE , compared
to ηZ , leads to slightly different, but qualitatively and quantitatively similar, meshes.

5.2. 3-D problems of flow and transport in porous media. This test is
very similar to the 2-D Example 2. Here we test the error estimators ηZ and ηE
on a real 3-D application in fluid flow and transport in porous media. Again, the
exact solution is unknown but we know its local behavior, which is due to boundary
layers, discontinuities of coefficients, and localized sources. The problem is described
as follows.

A steady-state flow, with Darcy velocity v measured in ft/yr, has been established
in a parallelepiped-shaped reservoir Ω = [0, 1000]× [−500, 500]× [0, 500] (see Figure 7,
right). First, we determine the pressure p(x) in Ω as the solution u(x) of problem
(1.1) with b = 0, γ = 0, and A(x) = D(x), where D(x) is the permeability tensor. The
pressure at faces x1 = 0 and x1 = 1000 is constant (correspondingly, 2,000 and 0).
The rest of the boundary is subject to a no-flow condition. We take the permeability
D(x) to be 32 I everywhere in Ω except in the layer (see Figure 7, middle) where
D(x) is taken to be 10 times smaller than in the rest of the domain, i.e., in the layer
D(x) = 3.2 I.

Also, we have six production wells. For all of them x3 is in the range 0, . . . , 400.
Their (x1, x2) coordinates are correspondingly (200, −250), (400, −250), (200, 0),
(400, 0), (200, 250), and (400, 250). We treat a well simply as a line-delta function
(sink) along the well axis. Production rates Q = 16,000 l/yr for wells in plane x2 = 0,
and Q = 8,000 l/yr for the rest, are the intensities of the sink. Figure 7 shows half of
the mesh and the contour curves of the pressure for the cross section x2 = 250 (left)
after five levels of local refinement. It has 19,850 tetrahedrons and 3,905 nodes. The
right picture shows the contour curves for the cross section x3 = 200.
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Fig. 8. Concentration computations for a nonhomogeneous reservoir. Left: The 3-D mesh
on refinement level 11 with 219,789 tetrahedrons and 39,752 nodes. Right: Concentration contour
curves for cross section x2 = 250.

Fig. 9. Concentration level curves at cross sections x3 = 200 (left) and x1 = 400 (right).

The weighted pressure gradient −D∇p forces the groundwater to flow. The trans-
port of a contaminant dissolved in the water (in our case, benzene) is described by
the convection-diffusion-reaction equation (1.1), where u(x) represents the benzene
concentration, b is the Darcy velocity v = −D∇p, γ is the biodegradation rate, and
A(x) is the diffusion-dispersion tensor:

A(x) = kdiffI + ktv
T v/|v| + kl(|v|2I − vT v)/|v|.

Here kdiff = 0.0001, kt = 21, and kl = 2.1 are the coefficients of diffusion, transverse,
and longitudinal dispersions, respectively. A steady piecewise linear in x3 and constant
in x2 leakage of benzene of maximum 30 mg/l is applied on the boundary strip x1 = 0
and 50 ≤ x3 ≤ 350. The leakage is 30 mg/l at x3 = 200 and drops linearly to 0 at x3 =
50 and 350. The rest of the boundary is subject to a homogeneous Neumann boundary
condition. The dispersion/convection process causes the dissolved benzene to disperse
in the reservoir. The biodegradation transforms it into a solid substance which is
absorbed by the soil. This leads to a decrease in the benzene. The computations are
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for the case of low absorption rate γ = 0.05. We approximate the convection term
using the upwind approximation (2.10).

Figure 8 shows the obtained mesh in half of the domain (left) on refinement
level 11. The mesh has 219,789 tetrahedrons and 39,752 nodes. The first five level
of refinement are for the pressure equation, the rest for the concentration. Figure
8 (right) shows the level curves for the concentration in the reservoir cross section
x2 = 250 on the same refinement level. Figure 9 gives the level curves at two more
cross sections, x3 = 200 (left) and x1 = 400 (right).
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