CONVERGENCE OF ADAPTIVE FEM
FOR A CLASS OF DEGENERATE CONVEX
MINIMIZATION PROBLEMS

CARSTEN CARSTENSEN*

ABSTRACT. A class of degenerate convex minimization problems
allows for some adaptive finite element method (AFEM) to com-
pute strongly converging stress approximations. The algorithm
AFEM consists of successive loops of the form

SOLVE — ESTIMATE — MARK — REFINE
and employs the bulk criterion. The convergence in ) (Q; R™>m)

relies on new sharp strict convexity estimates of degenerate convex
minimization problems with

J(v) := / W(Dv) dx —/ fode forveV :=W,P(Q;R™).
Q Q

The class of minimization problems includes strong convex prob-
lems and allows applications in an optimal design task, Hencky
elastoplasticity, or relaxation of 2-well problems allowing for mi-
crostructures.

1. CLAsS OoF CONVEX MINIMIZATION PROBLEMS

This section specifies a class of C! energy densities W: R™" — R
characterized by (H1)-(H2) for some constants 1 < p < 0o, 1 < r < 00,
and 0 < s < oo with

max{(1+s/r)/(1—=1/r),2n/(n+2)} <p,
through the two-sided growth condition
(H1) |FIP =1 SW(F) <1+ |F|P for all F € R™"
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and the convexity control

gy (L A1 B DI (A) = D (B
< W(B) — W(A) — DW(A) : (B — A) for all A, B € R™".

Here and throughout ”-” denotes the scalar product in R, ”:” denotes
the scalar product in R™*" and the expression ”<” abbreviates an in-
equality up to some multiplicative generic constant, i.e., A < B means
A < ¢B with some generic constant ¢ > 0, which is independent of the
arguments A, B, F' in (H1)-(H2) (but may depend on W and on the
aspect ratio of finite element triangulations).

Finally, ¢ := 1+ s/p and the Holder conjugate p’ of p satisfy
l<p <r/t<oo, and 1/p+1/p'=1

and where r/t and r/(r — t) are conjugate exponents, i.e., t/r + (r —
t)/r=1.

Section 3 exposes a list of examples with (H1)-(H2). The two-sided
growth control (H1) is standard in the form of

|FIP SW(F)+1 and W(F) S 1+ |FJP.
By adding a constant to W (F), it could be replaced even by
[P S W(F) ST+

The convexity control (H2) implies the monotonicity condition
(H3) (1+[A]" +[B]")"" [DW(A) — DW(B)]

< (DW(A)— DW(B)) : (A— B) for all A, B € R™*"
from [1]0, 11]. Under some conditions, (H2) is in fact equivalent to (H3)
15, 16].

Given such energy density W : R™*" — R and a bounded Lipschitz
domain Q C R”, n = 2,3, and some right-hand side f € L¥ (Q;R™),
define 7 : V — R by

(1.1) J(v) ::/QW(Dv)d:L’—/Qfmd:c for v € V := WyP(Q;R™).

Throughout this paper, Dv(z) denotes the m x n functional matrix
of V at x and we adapt standard notation on Lebesgue and Sobolev
spaces, e.g., W, ?(Q) denotes the subset of functions in WP(Q) with
trace zero on the boundary 02 of €.

The minimization problem reads: Seek minimizers in J in V, written

(1.2) u € arg%qei‘rllj(v).
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The existence of minimizers u or u, of (1.1) in V' or some closed sub-
space V; of V' is guaranteed under (H1)-(H2) while, in general, their
uniqueness fails. However, the respective exact and discrete stress

o:=DW(Du) and o, = DW(Du,) € L"{(Q;R™")

is unique [11], i.e., 0 and oy do not depend on the choice of u and w,
amongst the set of exact and discrete minimizers. The smoothness of
o € W,oP(€; R™*") has been analysed in [10, 16], while the smoothness
of u is open (recall that u may be non-unique). Therefore the a priori

error estimate (valid for any choice of u € argmin J)
o — ol Lagrmxny S 5161% [

although it may be regarded as quasi-optimal convergent, has its limi-
tations. The a posteriori error estimates for ||o — o¢||La(rm*n) known
from the literature even face some reliability-efficiency gap [9], cf. Sec-
tion 2 and Remark 2.1 below. Surprisingly, this does not prevent the
design of convergent adaptive mesh-refining algorithms.

2. AFEM

This section describes the adaptive mesh-refining strategy, proposed
in this paper and states the main result.

2.1. Outline. Given an initial coarse mesh 7y, an adaptive finite el-
ement method (AFEM) successively generates a sequence of meshes

T,,7, ... and associated discrete subspaces

(2.1) VozVig - 2Veg Vg2 - 2V

with discrete problems (Fp), (P1), (FP2), ...and discrete solutions uy,
U1, Us, . .. and discrete stresses og, 01, 09, . . . steered by refinement rules

and indicators. A typical loop from V; to V4 (at the frozen level )
consists of the steps

(2.2) SOLVE — ESTIMATE — MARK — REFINE

explained in the following Subsections.

2.2. Input. Input a shape-regular triangulation 75 of 2 C R” into
closed triangles (if n = 2) or closed tetrahedra (if n = 3) with associated
first-order finite element space Vj; suppose each element domain in 7,
(and furthermore in 7, 75, ...) has at least one vertex in the interior
of 2, put level ¢ := 0.

A triangulation 7; is regular if two distinct closed-element domains are
either disjoint or their intersection is one common vertex, one common
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edge (or, if n = 3 possibly one common face). For simplicity, all trian-
gulations in the paper will be regular. Those common faces are called
sides &, if n = 3. For n = 2, &, are the interior edges.

2.3. SOLVE. Given the triangulation 7, with set of interior sides &, and
interior nodes KCy, the piecewise affine space P;(7y) reads

P (T, R™) = {U € L R™) : VT € Ty, v|r € Pi(T; Rm)};
Pi(T;R™) = {veC®T;R™): JAcR™" 3 e R"
Ve eT: v(z) = Az + b}.

The discrete space V; := VNP1 (7y; R™) is the first-order finite element
space and allows for a nodal basis (¢, : z € Ky). Then the step SOLVE
reads: Solve the nonlinear discrete problem

(2.3) ug € arg mi‘I/l J(vy) and set oy := DW(Duy).
veEVy
The R™*"-valued stress o, is piecewise constant with respect to 7.

2.4. ESTIMATE. Given any interior side E € & with measure |E|, and
normal unit vector vz, compute the jump

Jg = [Ug]E vg € R™
of the discrete normal stresses o,vg over E, where

[od] p(z) = ngix ou(a) — T,harziz ao(b)

for all x € £ = 0T N OT_, and by convention, vg is exterior to T'y.
Then define

’ 1/p/ / ’
(2.4) ne = (Z n%) with ng = hlE/p |E|YY | Jg| for E € &,
Ec&y

[t is essentially known from [9, 11] that 7, is a reliable a posteriori error
estimator in the sense that

(25) ||U - O-KHZT/t(Q;RMX”) 5 77£ + 0OSCy,

cf. Lemma 4.2 below. Here and throughout, osc, denotes data oscilla-
tions. Given any connected open nonvoid w C €2, let

(2.6) osc(f,w)? := diam(w)” || f — waIZp,(w) with f, == |w|™ / fdz,

the integral mean of f over w. For each node z in the triangulation 7,
with nodal basis function ¢, € V;, let w, := {z € Q : p(z) > 0} denote
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the patch of z. Then, recall K, denotes the set of all interior nodes,

(2.7) oscfl = Z osc(f,w.)”.

ZEK,

Since osc, depends on the given data and explicitly on 7y, it can easily
be made arbitrarily small by additional refinement steps. This data
oscillation control allows for lim,_.., osc, = 0; cf. [17, 22] for algorithmic
details.

Remark 2.1. The upper bound in (2.5) is not sharp, the estimator 7, is
not efficient, because of r > 1. This is called reliability-efficiency gap
[9].

2.5. MARK. Select a subset M, of & in the current triangulation 7, with
(2.8) oSy
EeMy

Given a parameter 0 < © < 1 the selection condition (2.8) results from
choosing sufficiently many sides E with bigger ng in M, such that the
bulk criterion [13, 17, 18, 22] holds:

on < Y i
EeM,

This is easily arranged with some greedy algorithm.

2.6. REFINE. Refine the triangulation 7, and design a refined shape-
regular triangulation 7,,; such that each interior side £ = 0T . NIT_ €
M, is refined in 7y44, for Ty, 7" € 7, and T UT_ includes at least one
new node on F and at least one new node in the interior of either 7',

green blue (left) blue (right)
red 3 bisections 5 bisections

FIGURE 2.1. Possible refinements of a triangle in REFINE
of AFEM. The 5 bisections allow for an interior node

property.
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or T_. For n = 2 the inner node property is easily depicted with 5 bi-
sections as in Figure 2.1. More details on the shape-regular refinement
strategies can be found in [6].

2.7. Output. The AFEM computes a sequence of discrete stresses
00, 01,09, ... in LV (Q; R™ ") as approximations to o := DW(Du).
The main result of this paper is the strong convergence of the stresses.

Theorem 2.1 (Convergence Theorem). Suppose (H1)-(H2) and

lim osc, = 0.

{—00

Then the sequence of stress fields oy, 01,09,... converges strongly to-
wards the ezact stress field o in L7/*(Q; R™ ™).

The technical proof is postponed to Section 4, after the motivating list
of examples in Section 3.

3. EXAMPLES AND APPLICATIONS

This section briefly summarizes a few applications with explicit
proofs of (H1)-(H2) and hence with a convergent AFEM.

3.1. Uniformly Convex Minimization. Uniformly convex C! fun-
ction W : R™™ — R with globally Lipschitz continuous derivative
DW  i.e., for all A, B € R™*" there holds

A— B> < DW(A): (A— B)— W(A) + W(B)
IDW (A) — DW(B)| < |A— B|.

This implies (H1)-(H2) with p = 2 = r and s = 0 and, thus, the class (i)
is included in class (ii). Simple examples are W (F) = ¢(|sym F|)|F|?
for proper C? functions ¢ (cf., e.g., [23, Sections 62.3, 62.8-9] and [15,
Exercise 1.7 on page 21]).

3.2. Nonlinear Laplacian. The p-Laplacian satisfies (H1)-(H2) for
any 2<p<oocandr=2 s=p—2.

Lemma 3.1. Given 1 < p < oo define the function W : R™™ — R by
W(A) := |A]?/p. Then there exist a constant ¢, = c(p) such that for
all A, B € R™*" there holds

|IDW(A) = DW(B)]? < er(|AP~* + [BIP?)
x (W(B) — W(A) — DW(A; B — A)).
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Proof. Given A, B € R™" with A # B set a := |A| and b := |B|. A
quick check verifies that the assertion holds for either a = 0 or b = 0
with ¢; = max{p, ¢}. It is therefore assumed that ab > 0 in the sequel
and c:= A : B/(ab). Then 0 < t := b/a < co. The left- and right-hand
side of the assertion vanish for @ = b and ¢ = +1. This situation is
therefore excluded in the sequel. Then,

W(B) - W(A) -~ DW(A; B —A) =W /p—al/p—a’*(cb—a)
=b/p+ad’/q— a" be

is strictly positive (non-negativity immediately follows from Young’s
inequality and —1 < ¢ <'1). Since

|IDW(A) — DW(B)? = >~V 4+ p2P=D _ 9¢qP~1pp 1,
The quotient of the left- and the right-hand side of the assertion reads

a2V 4 P20 _ oeqrtppt 14 2= — 9¢pp—1
(P2 +0r=2)(b/p+ aP/q — a~tbe) — (1+1P=2)(tP/p+1/q — ct)
=: f(t,c).

A direct calculation verifies that 0f/0c as a function of ¢ has one
sign (which depends on t and p) and hence is monotone increasing or
decreasing. Therefore

max f(t,¢) = max{f(t,1), f(t,—1)}

—1<c<1

and the assertion reads f(¢,1) < ¢; and f(t,—1) < ¢ forall 0 < ¢ < oco.
The case ¢ = +1 is the crucial one because t?/p + 1/q — t vanishes
for t = 1. Hospital’s rule yields f(1,1) = 0. Since f(0,1) = ¢ and
lim; o f(t,1) = p, one deduces from continuity of f(¢,1) in ¢ that

sup f(t,1) = ¢; < 0.
0<t<oo

The analysis for ¢ = —1 is simpler and hence omitted. 0

3.3. Optimal Design Problem. Let 0 < t; < ty and 0 < ps < g
be positive real numbers with 11 = tapo and consider a convex C*
function v : [0, 00) — R with ¢(0) = 0 and

it for 0 <t <ty,
¢,<t) = tl,ul = tg,ug for tl S t S tQ,
1233 for t5 <'t.

The energy density W(A) := ¢ (|A]), A € R", results from a relaxation
process [14]. It satisfies (H1)-(H2) with p = r = 2 and s = 0. Details
can be found in [2].
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3.4. Scalar 2-Well Problem. The scalar convexified 2-well energy
density W results from a relaxation in nonconvex minimization prob-
lems allowing for microstructures [11]. It satisfies (H1)-(H2) with p =4
and r =2 =s.

Proposition 3.2. Given distinct Fy and Fy in R" set A := (Fy —
F1)/2 # 0 and B := (I} + Fy)/2 where (-); := max{0,-} and ()3 :=
max{0,-}?. For any F € R" let

W(F):= (IF = Bl = |AP)S + 4 (JAP|F = B> = (A- (F - B))*).
Then for any F,G € R"™ with £ := (|F — B|*> — |A]*), and n = (|G —
BJ? — |A|?), there holds

|DW(G) — DW (F)[*

< 32(JA* + £ +m)(W(G) = W(F) = DW(F) - (G - F)).

The proof of Proposition 3.2 is based on two lemmas.

Lemma 3.3. Given A, B € R" let W(F) := (|F — B> — |A]?)%.. For
any F and G in R" let

€= (F—BP—[AP), and 5= (G- B - |AP),.
Then there holds
|DW(F) — DW(G)[*
< 32(|A + €+ n)(W(G) = W(F) — DW(F) - (G = F)).
Proof. Let U := F—B,V := G—B, a := |A| and notice that DW (F') =

46U and DW(G) = 4nV. In the first case suppose that both, £ =
\U|> — a® and n = |V|*> — a?, are positive. Utilizing

DW(F)—DW(G) =4(&U —nV) =4£U - V) +4(€ —n)V
one obtains
1/32|DW(F) = DW(G)]? < €U = V[ + (€ —n)*[V|*.
Since |V |* = n + a? this proves
(3.1) 1/32|DW(F) = DW(G)]* < (a® +&+m) (U = VI + (£ —n)*).

On the other hand, the preceeding situation allows the direct calcula-
tion of
W(G)—-W(F)—DW(F)-(F—-GQG)

- @ AU (U V)
= =&+ 2(UP - |V]P) + 26U = V|?
= 2£|U = V]*+ (£ —n)*.
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The combination with (3.1) shows the assertion in the present first case
of positive £ and 7. For £ =0 < n = |V|? — a® the assertion reads

16°|V[> < 32(a® +n)n°

which follows immediately from |V]? < (a*+ 7). In the remaining case
n=a<§&=|U|?—a? whence |V| < a < |U|, the assertion reads

16U < 32(a” + (AU - (U = V) = &),
This is equivalent to
EIUP < 2(a® +€)(€° + 26(a® = V) + 2£|U = V)
and hence follows from |U]*> = a? + ¢ and 0 < a® — |V ]2 O

Lemma 3.4. Let S be a symmetric and positive semidefinite real n X n
matriz with spectral radius o(S) and pseudo inverse ST and induced
seminorm | - |g+, i.e.,

|Flg+ := (F-SYF)Y?  for all F € R™.
Then the function W : R™ — R defined by
W(F):=1Y2F-SF for FeR"
satisfies
o(S)~|DW(F) — DW(G)|* < |[DW(F) — DW(G)§+
(F—-G)-S(F-G)
2W(G) —W(F) - (SF)- (G - F)).
Proof. Since S is symmetric, S = SSTS, and so DW(F) = SF satisfies
[S(F = G)* < o(S)|SY*(F = G)I* = o(S)|S(F — )5
The remaining identity results from
2o(F-G)-S(F-G)=W(G)-W(F)+F -S(F-G). O

Proof of Proposition 3.2. Notice that W (F') is the sum of the two en-
ergy densities of the aforegoing lemmas. Indeed, let A% := A/|A| and

define the symmetric and positive semidefinite matrix S := 1—A%® A°.
Then

4 (|AP|F = B> = (A (F - B))?) = 4|A]’|F — B[3.
Observe the upper bound of S
|IDW(G) — DW (F)|? < 32|€U — nV|* + 32|AI*U — V|2
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is estimated in Lemma 3.3 and Lemma 3.4, respectively. This concludes
the proof. O

3.5. Vectorial 2-Well Problem. Given two distinct wells F; and

Ey in Ry with minimal energies WY and W3 in R, we consider the

quadratic elastic energies

W;(E) :=12(E — E;) : C(E— E;) + W, for all E € RI\)

sym*
Energy minimization leads to an optimal choice of the configuration of

the two phases, and so the strain energy density W is modelled by the
minimum

W(E) = min{Wy(E), Wy(E)} for all E € R%"

sym *
The two wells (transformation strains) are said to be compatible if
(3.2) Ei=FEy+1Y2(a®b+b®a) for some a,b e R".

Then the constant v = 1/2|Ey — Ey|2 and the quasiconvexification W
of W = {W;, Wy} [14] is given by
Wa(E) if Wa(E) +~ < Wi(E),
iy - | HOV(B)+ WA(E)) — E(Wa(E) - Wi(B))? - §
if [Wa(E) = WA(E)| <7,
The convex W satisfies (H1)-(H2) with p =2 =r and s = 0.

Proposition 3.5. In the compatible case (3.2) there holds, for all
A, B e RL,

12| DW(A) — DW(B)|a2-1 < W(B) — W(A) — DW(A) : (B — A).
Proof. A translation of the argument in W allows us to assume, without
loss of generality, that £} + E5 = 0. For £ € RIX" let

sym s
p(E) = 7 (Wa(E) — Wi(E)),
Y(E) = max{—1,min{l, o(E)}}.

As in [12] one deduces, for E € R and yo(FE) = 2(CE,) : E4+ Wy —
w?,
DW(E) = CE — ¢(E)CE,

and observes that ¢(E) = ¢(F) for E € R with —1 < ¢(E) < 1.
The proof of the proposition starts with the discussion of

(3.3) 7/2 (B(B) — $(A)) ($(A) — p(4)) = 0.
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In fact, ¥(A) # p(A) implies either ¥(A) = 1 < p(A) [notice Y(B) —
1 <0 or v(A) = —1 > p(A) [notice »(B) + 1 > 0] and in each
case (3.3) follows. Algebraic manipulations will show in the sequel
that (3.3) is equivalent to the assertion. Abbreviate o := DW(A) and
7 := DW/(B) to compute the left-hand side of the assertion, namely

Voo =72 =1/2(r—0) : C Yt +0)+ (0 —7): C 0.
With C'(0 —7) = A— B — ¢(A)E) + ¢(B)Ey, this reads
o: (A= B)—12|0 - 7|3
= (W(A) = ¥(B) B 0 = 127G + 12 |olE .
The definition of o and 7 and v/2 = |E;|% show

YV2lole = Y2|rlgs = Y2|Alg = 12|BJg +7/4 (¥(A)* — ¢ (B)?)
—(A)A: CE, +¢(B)B : CE;.
It is a lengthy but direct verification that W(FE), E € R{7, can be
written as
W(E) =12E: CE +Y2(W} + W) +/49(E) (Y (E) — 20(E)).

The combination of the preceeding three identities [the last applied to
E = A and E = B] shows

W(B) —W(A)+0c:(A—B) =120 — 7|2
= (P(A) —(B))(Er : CA —p(A)v/2)
—¢(A)A: CE; +¢(B)B : CE;
+79/2¢0(A)(A) —v/2¢(B)y(B)
= —7/2¢(A)* + 7/2¢(A)(B) — ¥(B)Er : C(A - B)
+79/2¢0(A)(A) —~/2¢(B)Y(B).
Since F; : C(A — B) = v/2(p(A) — ¢(B)) shows that the preceeding
expression equals the left-hand side of (3.3). O

Remark 3.1. The immediate corollary (H3) of Proposition 3.5 is known
from [10, 12] and fundamental for error analysis and regularity.

3.6. Hencky elastoplasticity with hardening. One time step with-
in an elastoplastic evolution problem leads to Hencky’s model. For
various hardening laws and von-Mises yield conditions, an elimination
of internal variables [1] leads to the energy function

1 1
(3.4) W(E):= 5B CE- ” max{0, | dev CE| — o, }?/(1 + 1)
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for E' € Ry Here we adopt notation of the previous section and C is
the fourth-order elasticity tensor, o, > 0 is the yield stress, and n > 0 is
the modulus of hardening. The model of perfect plasticity corresponds
ton =0 [21]. For n > 0 there holds (H1)-(H2) for p =2 = r and s = 0.

Proposition 3.6. For all A, B € RI" there holds

/2| DW(A) = DW(B)[g-1 < W(B) = W(A) — DW(A) : (B — A).
Proof. Set ¢(x) := 1 — max{0,1 — o,/(2ux)}/(1 + n) to define the

continuous and monotone decreasing function v : [0,00) — (n/(1 +
n), 1] which satisfies

DW(E) = (A+2u/n)tr(E)14+2u(|dev E|)dev E - for all E € R

sym -

Given A, B € R{1, the following abbreviations will be used through-
out the remaining part of the proof:

o= DW(A), a = |dev A|, a
7 := DW(B), b:=|dev B, B = 1(b).
Then the assertion reads
§:=W(B)—W(A)+0:(A-B)—1/2|c — 72 > 0.

In the first three steps one computes §. The aforementioned formulae
for DW(A) and DW(B) and elementary calculations with the third
formula of Binomi yield in step one that

o:CYo—71)—1/2|0c — 7|3
— 1/2J2 0 — 17272
— (A2 + /) (tx(A)? — tx(B)?) + pu(a®a? — B2).
Step two employs the definition of ¢ to rewrite the energy as
W(E) =1/2|Eg — (1+n)u (1 = (| dev E)))* |dev BP,

for all £ € Ry 1. Step three employs the above formulae for o and 7

to estimate

0:(A=B)—0:C ' (o—7) =2uadevA: ((1—a)dev A—(1—0) dev B).

The Cauchy inequality, leads to
0:(A=B)—0:CYo—7)>2ua(l —a)a* —2ua(l — 3)ab.

The left-hand sides considered in the first three steps add up to ¢ and
so lead to a lower bound of . Elementary manipulations with this
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lower bound in step four of the proof yield the estimate
5/ > a%a? — B + B2 — a? + (1 4+ n)(1 - a)%a? — (1 +n)(1 — B)2?
+2a(1 — a)a® — 2a(1 — B)ab
— (1 — a)2a? — (1 — B)%* +2(1 — B)b(Bb — aa)

= (= a)a—(1-pp)
+2(1 = Ab((1+9)(8b — aa) = (b~ a)).

Step five concerns the function g(x) := z(x) which satisfies ¢'(z) = 1
and ¢'(x) = n/(1 +n) for 2ur < o, and o, < 2ux, respectively. For
a < b, this and the fundamental theorem of calculus show

b
(35  ab-a) <147 / §(x) dz = (1+ n)(Bb — aa).

This concludes the proof of 9 > 0 in this case. In the case b < a,
the above lower bound of ¢ shows 6 > 0 if 3 = 1. Hence it remains
to consider b < a and § < 1 which implies o, < 2ub and so ¢'(z) =
n/(1+4n) for all b < x < a. This yields equality in (3.5) and so proves
5> 0. O

Remark 3.2. Although (H2) holds for n = 0 as well, the linear growth
condition yields a different functional analytical setting in BD(S2) [21].

4. PROOF OF CONVERGENCE

This section provides a proof of Theorem 2.1 on the convergence of
the stress fields in L'/*(Q; R™ ™). Throughout this section, the focus
is on the energy difference

5@ = j(Ug) —j(u) Z 0.

Due to (2.1), the sequence (&), is monotone decreasing, and hence
convergent to some limit ¢ > 0. It is essential to prove § = 0, which is
not known in the beginning of the proof.

Lemma 4.1. There holds
HU€+1 - O-ZHT[,/’I’/t(Q;Ran) 5 5@ - 5€+1-

Proof. The two-sided growth conditions in (H1) lead in [11] to the
boundedness of discrete minimizers in WP and show

(4.1) /(1 + | Dugl® + | Dug|*)P* do < 1.
Q
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Since 04,1 satisfies the discrete Euler-Lagrange equations, there holds
/ oei1 2 D(ug — upyq) doe = / f(ug — upyq) de.
Q Q

Therefore,
(Sg - (Sg+1 = / (W(DU() - W(DUK_H) - f . (Ug — ’u“_l)) dx
Q

= /Q(W(Dug) — W(Dugs1) — 0pq1 2 D(ug — W+1)> dx.

An application of (H2) with A = Duy,q(x) and B = Duy(x) leads to
an estimate for all x in €2. The integral of those inequalities reads

/(1 1Dl + [Dugea ") |o¢ = opaa| da
Q

(4.2) < /Q<W(DW) — W(Dugy1) — 01 - D(ug — upyq)) do

= 0p — Op41-

The Holder inequality with ¢ and ¢ = 1+p/s, 1/t+1/t' =1, plus (4.1)
with ¢/t = p/s lead to

Jots1 = 0ol ey = [ 1Dl D) o = ol
X (1 + ]Duds + |DU@+1|S)1/t dx
1/t
< (/(1 + | Dugl® + |Dugy1|*) "t ow — oega|” d:L‘) :
Q

The combination of this estimate with (4.2) proves the lemma. O

Lemma 4.2. There holds (2.5), namely

r

Proof. In slightly different notation, it is proven in [11] that
(4.3) lo = oellprse@mmsny S e + 1Pz fll 1o 0

It is known since [19, 20] that the volume contribution Az, f|l1 (o)
can be controlled by 71, + osc, and so (4.3) leads to the assertion; cf.
9] for one particular case. The main arguments are recalled here for

convenient reading. A triangle inequality yields, for each free node z,
that

(4.4) 1At oy S N = Forllpwr oy + | il V7
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The integral mean equals

(45)  fulwl~ /Q oo fo d = /Q o (f — fo)dz + /Q o.f da.

The combination of (4.4)-(4.5) plus a Holder inequality shows

/Qsozfdx’-

On the other hand, the discrete Euler-Lagrange equations show for the

(46) Il SN = Forlliw oy + lwal 17

j-th component f; of f and the components oy ; := (04, ...,00,,) of
Oy, that
(4.7) /%f]dx_/% Vgozd:v—Z/ 004] - VE>%ds

Eeg

with an elementwise integration by parts. Let £(z) :={E € £ : 2z €
E} denote the set of sides which contribute in (4.7). Then for all
j=1,2,...,m components in (4.7) it follows that

[ renas < ( > i) /p( > w el w)

p —1

Since the last factor in (4.8) is proportional to h.' / for h, = diam(w,),

(4.7)-(4.8) yield
/fgp dxp

Since £(z), for free nodes z € K, have a finite overlap, the combination
of (4.6) and (4.9) shows

Ihz 117, @~ don HfHLp( S osco(f) 4
ze

This and (4.3) proof the assertion. O

(4.9) lw, |77/

<hp ZUE

Ecé(z

Remark 4.1. The condition that each element has at least one vertex,
which is a free node, leads to = (J, ., w. in the proof of Lemma 4.2.
This can be generalised by enlarging w, to €2, by some elements near
the boundary. We refer to [5, 4, 7, 8] for details.

Lemma 4.3. For any E € M, with E = 0T, U9T_ for T\, T_ € 7,
and wg = int(T UT_) there holds

e S lloen = ol @pmmeny + 1 = fosllir wpmm)-
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Proof. REFINE allows for nodal basis functions ¢z of a new node mid(F)
in £ and ¢g of a new node mid(wg) in either T or T_, with respect to
the finer triangulation 7,4 and E,T,,T_ from 7,. Then, there exists
some linear combination

Vi == app + g € Vi N W()Lp(WE; R™)

with the following conditions
/ vpds = |E|, / vpdz = 0, [vslly ~ hi [ws]/7.
E WE

The construction of such Vg is the same as in linear problems [3, 13,
17, 18, 22] and hence the remaining details are neglected and the sub-
sequent outline is kept brief. Since Jg is constant along F

|E|Jg = /([O’g]l/E) cvpds = / o : Dug dx.
E wE

Since vg € Vy1 and o444 satisfy the discrete Euler-Lagrange equations,

/ JgIDUEdIL’:/ (U@-O@+1)2DUECZ$—|—/ (f = fuop) - vpdz
wg wWE WE

with the constant integral mean f,,, of f over wg. The combination of
the above identity with Friedrichs inequality ||vg|| re(wprm) S helve|v
proves

ne = hf? | B/ | Jg) S hf” |B1Y? (loe = ol o gy
+ gl f = fonll o ) lvElly. O

Proof of Theorem 2.1. Notice that the patches have a finite overlap and
Z h%”f - waHLP/(wE;Rm) 5 OSC? :
Ecé&,y
Hence Lemma 4.3 leads to
Z T]% 5 ||O-£+1 - UE“ip/(Q;Rmxn) + OSC? °
EeM
This, (2.8) in MARK and Lemma 4.2 show

’ , ,
||O_ - UZHZIZ/t(Q;Ran) f§ 77? + OSC?

(4.10) S D My toset
EeMy

/ /
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Since (d;) — ¢, the right-hand side in Lemma 4.1 converges to zero,
i.e.,

{—00

Since p’ < r/t and || < 1, the right-hand side in (4.10) tends to zero
as ¢ — oo. This proves the claimed strong convergence

{—00
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